Metamath Proof Explorer


Theorem ufli

Description: Property of a set that satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion ufli ( ( 𝑋 ∈ UFL ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹𝑓 )

Proof

Step Hyp Ref Expression
1 isufl ( 𝑋 ∈ UFL → ( 𝑋 ∈ UFL ↔ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝑔𝑓 ) )
2 1 ibi ( 𝑋 ∈ UFL → ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝑔𝑓 )
3 sseq1 ( 𝑔 = 𝐹 → ( 𝑔𝑓𝐹𝑓 ) )
4 3 rexbidv ( 𝑔 = 𝐹 → ( ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝑔𝑓 ↔ ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹𝑓 ) )
5 4 rspccva ( ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝑔𝑓𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹𝑓 )
6 2 5 sylan ( ( 𝑋 ∈ UFL ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹𝑓 )