Description: Property of a set that satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ufli | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isufl | ⊢ ( 𝑋 ∈ UFL → ( 𝑋 ∈ UFL ↔ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝑔 ⊆ 𝑓 ) ) | |
2 | 1 | ibi | ⊢ ( 𝑋 ∈ UFL → ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝑔 ⊆ 𝑓 ) |
3 | sseq1 | ⊢ ( 𝑔 = 𝐹 → ( 𝑔 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝑓 ) ) | |
4 | 3 | rexbidv | ⊢ ( 𝑔 = 𝐹 → ( ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝑔 ⊆ 𝑓 ↔ ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) ) |
5 | 4 | rspccva | ⊢ ( ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝑔 ⊆ 𝑓 ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) |
6 | 2 5 | sylan | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) |