| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ufilfil | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  𝐴  ∈  𝐹 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  𝐴  ∈  𝐹 )  →  𝐴  ∈  𝐹 ) | 
						
							| 5 |  | unss | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ↔  ( 𝐴  ∪  𝐵 )  ⊆  𝑋 ) | 
						
							| 6 | 5 | biimpi | ⊢ ( ( 𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  →  ( 𝐴  ∪  𝐵 )  ⊆  𝑋 ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  →  ( 𝐴  ∪  𝐵 )  ⊆  𝑋 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ( 𝐴  ∪  𝐵 )  ⊆  𝑋 ) | 
						
							| 9 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 10 | 9 | a1i | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  𝐴  ∈  𝐹 )  →  𝐴  ⊆  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 11 |  | filss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝐹  ∧  ( 𝐴  ∪  𝐵 )  ⊆  𝑋  ∧  𝐴  ⊆  ( 𝐴  ∪  𝐵 ) ) )  →  ( 𝐴  ∪  𝐵 )  ∈  𝐹 ) | 
						
							| 12 | 3 4 8 10 11 | syl13anc | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  𝐴  ∈  𝐹 )  →  ( 𝐴  ∪  𝐵 )  ∈  𝐹 ) | 
						
							| 13 | 12 | ex | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  →  ( 𝐴  ∈  𝐹  →  ( 𝐴  ∪  𝐵 )  ∈  𝐹 ) ) | 
						
							| 14 | 2 | adantr | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  𝐵  ∈  𝐹 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  𝐵  ∈  𝐹 )  →  𝐵  ∈  𝐹 ) | 
						
							| 16 | 7 | adantr | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  𝐵  ∈  𝐹 )  →  ( 𝐴  ∪  𝐵 )  ⊆  𝑋 ) | 
						
							| 17 |  | ssun2 | ⊢ 𝐵  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 18 | 17 | a1i | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  𝐵  ∈  𝐹 )  →  𝐵  ⊆  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 19 |  | filss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐵  ∈  𝐹  ∧  ( 𝐴  ∪  𝐵 )  ⊆  𝑋  ∧  𝐵  ⊆  ( 𝐴  ∪  𝐵 ) ) )  →  ( 𝐴  ∪  𝐵 )  ∈  𝐹 ) | 
						
							| 20 | 14 15 16 18 19 | syl13anc | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  𝐵  ∈  𝐹 )  →  ( 𝐴  ∪  𝐵 )  ∈  𝐹 ) | 
						
							| 21 | 20 | ex | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  →  ( 𝐵  ∈  𝐹  →  ( 𝐴  ∪  𝐵 )  ∈  𝐹 ) ) | 
						
							| 22 | 13 21 | jaod | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  →  ( ( 𝐴  ∈  𝐹  ∨  𝐵  ∈  𝐹 )  →  ( 𝐴  ∪  𝐵 )  ∈  𝐹 ) ) | 
						
							| 23 |  | ufilb | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋 )  →  ( ¬  𝐴  ∈  𝐹  ↔  ( 𝑋  ∖  𝐴 )  ∈  𝐹 ) ) | 
						
							| 24 | 23 | 3adant3 | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  →  ( ¬  𝐴  ∈  𝐹  ↔  ( 𝑋  ∖  𝐴 )  ∈  𝐹 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝐹 )  →  ( ¬  𝐴  ∈  𝐹  ↔  ( 𝑋  ∖  𝐴 )  ∈  𝐹 ) ) | 
						
							| 26 | 2 | 3ad2ant1 | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝐹  ∧  ( 𝑋  ∖  𝐴 )  ∈  𝐹 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 27 |  | difun2 | ⊢ ( ( 𝐵  ∪  𝐴 )  ∖  𝐴 )  =  ( 𝐵  ∖  𝐴 ) | 
						
							| 28 |  | uncom | ⊢ ( 𝐵  ∪  𝐴 )  =  ( 𝐴  ∪  𝐵 ) | 
						
							| 29 | 28 | difeq1i | ⊢ ( ( 𝐵  ∪  𝐴 )  ∖  𝐴 )  =  ( ( 𝐴  ∪  𝐵 )  ∖  𝐴 ) | 
						
							| 30 | 27 29 | eqtr3i | ⊢ ( 𝐵  ∖  𝐴 )  =  ( ( 𝐴  ∪  𝐵 )  ∖  𝐴 ) | 
						
							| 31 | 30 | ineq2i | ⊢ ( 𝑋  ∩  ( 𝐵  ∖  𝐴 ) )  =  ( 𝑋  ∩  ( ( 𝐴  ∪  𝐵 )  ∖  𝐴 ) ) | 
						
							| 32 |  | indifcom | ⊢ ( 𝐵  ∩  ( 𝑋  ∖  𝐴 ) )  =  ( 𝑋  ∩  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 33 |  | indifcom | ⊢ ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝑋  ∖  𝐴 ) )  =  ( 𝑋  ∩  ( ( 𝐴  ∪  𝐵 )  ∖  𝐴 ) ) | 
						
							| 34 | 31 32 33 | 3eqtr4i | ⊢ ( 𝐵  ∩  ( 𝑋  ∖  𝐴 ) )  =  ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝑋  ∖  𝐴 ) ) | 
						
							| 35 |  | filin | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝐹  ∧  ( 𝑋  ∖  𝐴 )  ∈  𝐹 )  →  ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝑋  ∖  𝐴 ) )  ∈  𝐹 ) | 
						
							| 36 | 2 35 | syl3an1 | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝐹  ∧  ( 𝑋  ∖  𝐴 )  ∈  𝐹 )  →  ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝑋  ∖  𝐴 ) )  ∈  𝐹 ) | 
						
							| 37 | 34 36 | eqeltrid | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝐹  ∧  ( 𝑋  ∖  𝐴 )  ∈  𝐹 )  →  ( 𝐵  ∩  ( 𝑋  ∖  𝐴 ) )  ∈  𝐹 ) | 
						
							| 38 |  | simp13 | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝐹  ∧  ( 𝑋  ∖  𝐴 )  ∈  𝐹 )  →  𝐵  ⊆  𝑋 ) | 
						
							| 39 |  | inss1 | ⊢ ( 𝐵  ∩  ( 𝑋  ∖  𝐴 ) )  ⊆  𝐵 | 
						
							| 40 | 39 | a1i | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝐹  ∧  ( 𝑋  ∖  𝐴 )  ∈  𝐹 )  →  ( 𝐵  ∩  ( 𝑋  ∖  𝐴 ) )  ⊆  𝐵 ) | 
						
							| 41 |  | filss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( ( 𝐵  ∩  ( 𝑋  ∖  𝐴 ) )  ∈  𝐹  ∧  𝐵  ⊆  𝑋  ∧  ( 𝐵  ∩  ( 𝑋  ∖  𝐴 ) )  ⊆  𝐵 ) )  →  𝐵  ∈  𝐹 ) | 
						
							| 42 | 26 37 38 40 41 | syl13anc | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝐹  ∧  ( 𝑋  ∖  𝐴 )  ∈  𝐹 )  →  𝐵  ∈  𝐹 ) | 
						
							| 43 | 42 | 3expia | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝐹 )  →  ( ( 𝑋  ∖  𝐴 )  ∈  𝐹  →  𝐵  ∈  𝐹 ) ) | 
						
							| 44 | 25 43 | sylbid | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝐹 )  →  ( ¬  𝐴  ∈  𝐹  →  𝐵  ∈  𝐹 ) ) | 
						
							| 45 | 44 | orrd | ⊢ ( ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  ∧  ( 𝐴  ∪  𝐵 )  ∈  𝐹 )  →  ( 𝐴  ∈  𝐹  ∨  𝐵  ∈  𝐹 ) ) | 
						
							| 46 | 45 | ex | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  →  ( ( 𝐴  ∪  𝐵 )  ∈  𝐹  →  ( 𝐴  ∈  𝐹  ∨  𝐵  ∈  𝐹 ) ) ) | 
						
							| 47 | 22 46 | impbid | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝐴  ⊆  𝑋  ∧  𝐵  ⊆  𝑋 )  →  ( ( 𝐴  ∈  𝐹  ∨  𝐵  ∈  𝐹 )  ↔  ( 𝐴  ∪  𝐵 )  ∈  𝐹 ) ) |