Step |
Hyp |
Ref |
Expression |
1 |
|
ufilfil |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
4 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ∈ 𝐹 ) |
5 |
|
unss |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
6 |
5
|
biimpi |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
7 |
6
|
3adant1 |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
9 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
10 |
9
|
a1i |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
11 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝐹 ∧ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) |
12 |
3 4 8 10 11
|
syl13anc |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) |
13 |
12
|
ex |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝐹 → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) ) |
14 |
2
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐵 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
15 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐵 ∈ 𝐹 ) → 𝐵 ∈ 𝐹 ) |
16 |
7
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
17 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
18 |
17
|
a1i |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐵 ∈ 𝐹 ) → 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
19 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐵 ∈ 𝐹 ∧ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ∧ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) |
20 |
14 15 16 18 19
|
syl13anc |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ 𝐵 ∈ 𝐹 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) |
21 |
20
|
ex |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐵 ∈ 𝐹 → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) ) |
22 |
13 21
|
jaod |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) ) |
23 |
|
ufilb |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ¬ 𝐴 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) ) |
24 |
23
|
3adant3 |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ¬ 𝐴 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) → ( ¬ 𝐴 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) ) |
26 |
2
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
27 |
|
difun2 |
⊢ ( ( 𝐵 ∪ 𝐴 ) ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) |
28 |
|
uncom |
⊢ ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) |
29 |
28
|
difeq1i |
⊢ ( ( 𝐵 ∪ 𝐴 ) ∖ 𝐴 ) = ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) |
30 |
27 29
|
eqtr3i |
⊢ ( 𝐵 ∖ 𝐴 ) = ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) |
31 |
30
|
ineq2i |
⊢ ( 𝑋 ∩ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑋 ∩ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) ) |
32 |
|
indifcom |
⊢ ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∩ ( 𝐵 ∖ 𝐴 ) ) |
33 |
|
indifcom |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∩ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) ) |
34 |
31 32 33
|
3eqtr4i |
⊢ ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝑋 ∖ 𝐴 ) ) |
35 |
|
filin |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝑋 ∖ 𝐴 ) ) ∈ 𝐹 ) |
36 |
2 35
|
syl3an1 |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → ( ( 𝐴 ∪ 𝐵 ) ∩ ( 𝑋 ∖ 𝐴 ) ) ∈ 𝐹 ) |
37 |
34 36
|
eqeltrid |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) ∈ 𝐹 ) |
38 |
|
simp13 |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → 𝐵 ⊆ 𝑋 ) |
39 |
|
inss1 |
⊢ ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) ⊆ 𝐵 |
40 |
39
|
a1i |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) ⊆ 𝐵 ) |
41 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ ( 𝐵 ∩ ( 𝑋 ∖ 𝐴 ) ) ⊆ 𝐵 ) ) → 𝐵 ∈ 𝐹 ) |
42 |
26 37 38 40 41
|
syl13anc |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 ) → 𝐵 ∈ 𝐹 ) |
43 |
42
|
3expia |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) → ( ( 𝑋 ∖ 𝐴 ) ∈ 𝐹 → 𝐵 ∈ 𝐹 ) ) |
44 |
25 43
|
sylbid |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) → ( ¬ 𝐴 ∈ 𝐹 → 𝐵 ∈ 𝐹 ) ) |
45 |
44
|
orrd |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) → ( 𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹 ) ) |
46 |
45
|
ex |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 → ( 𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹 ) ) ) |
47 |
22 46
|
impbid |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹 ) ↔ ( 𝐴 ∪ 𝐵 ) ∈ 𝐹 ) ) |