Metamath Proof Explorer


Theorem ufprim

Description: An ultrafilter is a prime filter. (Contributed by Jeff Hankins, 1-Jan-2010) (Revised by Mario Carneiro, 2-Aug-2015)

Ref Expression
Assertion ufprim ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴𝐹𝐵𝐹 ) ↔ ( 𝐴𝐵 ) ∈ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 ufilfil ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
2 1 3ad2ant1 ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
3 2 adantr ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
4 simpr ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐹 ) → 𝐴𝐹 )
5 unss ( ( 𝐴𝑋𝐵𝑋 ) ↔ ( 𝐴𝐵 ) ⊆ 𝑋 )
6 5 biimpi ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴𝐵 ) ⊆ 𝑋 )
7 6 3adant1 ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴𝐵 ) ⊆ 𝑋 )
8 7 adantr ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐹 ) → ( 𝐴𝐵 ) ⊆ 𝑋 )
9 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
10 9 a1i ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐹 ) → 𝐴 ⊆ ( 𝐴𝐵 ) )
11 filss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐹 ∧ ( 𝐴𝐵 ) ⊆ 𝑋𝐴 ⊆ ( 𝐴𝐵 ) ) ) → ( 𝐴𝐵 ) ∈ 𝐹 )
12 3 4 8 10 11 syl13anc ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐹 ) → ( 𝐴𝐵 ) ∈ 𝐹 )
13 12 ex ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴𝐹 → ( 𝐴𝐵 ) ∈ 𝐹 ) )
14 2 adantr ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ 𝐵𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
15 simpr ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ 𝐵𝐹 ) → 𝐵𝐹 )
16 7 adantr ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ 𝐵𝐹 ) → ( 𝐴𝐵 ) ⊆ 𝑋 )
17 ssun2 𝐵 ⊆ ( 𝐴𝐵 )
18 17 a1i ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ 𝐵𝐹 ) → 𝐵 ⊆ ( 𝐴𝐵 ) )
19 filss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐵𝐹 ∧ ( 𝐴𝐵 ) ⊆ 𝑋𝐵 ⊆ ( 𝐴𝐵 ) ) ) → ( 𝐴𝐵 ) ∈ 𝐹 )
20 14 15 16 18 19 syl13anc ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ 𝐵𝐹 ) → ( 𝐴𝐵 ) ∈ 𝐹 )
21 20 ex ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐵𝐹 → ( 𝐴𝐵 ) ∈ 𝐹 ) )
22 13 21 jaod ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴𝐹𝐵𝐹 ) → ( 𝐴𝐵 ) ∈ 𝐹 ) )
23 ufilb ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋 ) → ( ¬ 𝐴𝐹 ↔ ( 𝑋𝐴 ) ∈ 𝐹 ) )
24 23 3adant3 ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( ¬ 𝐴𝐹 ↔ ( 𝑋𝐴 ) ∈ 𝐹 ) )
25 24 adantr ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐴𝐵 ) ∈ 𝐹 ) → ( ¬ 𝐴𝐹 ↔ ( 𝑋𝐴 ) ∈ 𝐹 ) )
26 2 3ad2ant1 ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐴𝐵 ) ∈ 𝐹 ∧ ( 𝑋𝐴 ) ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
27 difun2 ( ( 𝐵𝐴 ) ∖ 𝐴 ) = ( 𝐵𝐴 )
28 uncom ( 𝐵𝐴 ) = ( 𝐴𝐵 )
29 28 difeq1i ( ( 𝐵𝐴 ) ∖ 𝐴 ) = ( ( 𝐴𝐵 ) ∖ 𝐴 )
30 27 29 eqtr3i ( 𝐵𝐴 ) = ( ( 𝐴𝐵 ) ∖ 𝐴 )
31 30 ineq2i ( 𝑋 ∩ ( 𝐵𝐴 ) ) = ( 𝑋 ∩ ( ( 𝐴𝐵 ) ∖ 𝐴 ) )
32 indifcom ( 𝐵 ∩ ( 𝑋𝐴 ) ) = ( 𝑋 ∩ ( 𝐵𝐴 ) )
33 indifcom ( ( 𝐴𝐵 ) ∩ ( 𝑋𝐴 ) ) = ( 𝑋 ∩ ( ( 𝐴𝐵 ) ∖ 𝐴 ) )
34 31 32 33 3eqtr4i ( 𝐵 ∩ ( 𝑋𝐴 ) ) = ( ( 𝐴𝐵 ) ∩ ( 𝑋𝐴 ) )
35 filin ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐴𝐵 ) ∈ 𝐹 ∧ ( 𝑋𝐴 ) ∈ 𝐹 ) → ( ( 𝐴𝐵 ) ∩ ( 𝑋𝐴 ) ) ∈ 𝐹 )
36 2 35 syl3an1 ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐴𝐵 ) ∈ 𝐹 ∧ ( 𝑋𝐴 ) ∈ 𝐹 ) → ( ( 𝐴𝐵 ) ∩ ( 𝑋𝐴 ) ) ∈ 𝐹 )
37 34 36 eqeltrid ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐴𝐵 ) ∈ 𝐹 ∧ ( 𝑋𝐴 ) ∈ 𝐹 ) → ( 𝐵 ∩ ( 𝑋𝐴 ) ) ∈ 𝐹 )
38 simp13 ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐴𝐵 ) ∈ 𝐹 ∧ ( 𝑋𝐴 ) ∈ 𝐹 ) → 𝐵𝑋 )
39 inss1 ( 𝐵 ∩ ( 𝑋𝐴 ) ) ⊆ 𝐵
40 39 a1i ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐴𝐵 ) ∈ 𝐹 ∧ ( 𝑋𝐴 ) ∈ 𝐹 ) → ( 𝐵 ∩ ( 𝑋𝐴 ) ) ⊆ 𝐵 )
41 filss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( 𝐵 ∩ ( 𝑋𝐴 ) ) ∈ 𝐹𝐵𝑋 ∧ ( 𝐵 ∩ ( 𝑋𝐴 ) ) ⊆ 𝐵 ) ) → 𝐵𝐹 )
42 26 37 38 40 41 syl13anc ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐴𝐵 ) ∈ 𝐹 ∧ ( 𝑋𝐴 ) ∈ 𝐹 ) → 𝐵𝐹 )
43 42 3expia ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐴𝐵 ) ∈ 𝐹 ) → ( ( 𝑋𝐴 ) ∈ 𝐹𝐵𝐹 ) )
44 25 43 sylbid ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐴𝐵 ) ∈ 𝐹 ) → ( ¬ 𝐴𝐹𝐵𝐹 ) )
45 44 orrd ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐴𝐵 ) ∈ 𝐹 ) → ( 𝐴𝐹𝐵𝐹 ) )
46 45 ex ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴𝐵 ) ∈ 𝐹 → ( 𝐴𝐹𝐵𝐹 ) ) )
47 22 46 impbid ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴𝐹𝐵𝐹 ) ↔ ( 𝐴𝐵 ) ∈ 𝐹 ) )