| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f0 | ⊢ ∅ : ∅ ⟶ ∅ | 
						
							| 2 |  | dm0 | ⊢ dom  ∅  =  ∅ | 
						
							| 3 |  | pw0 | ⊢ 𝒫  ∅  =  { ∅ } | 
						
							| 4 | 3 | difeq1i | ⊢ ( 𝒫  ∅  ∖  { ∅ } )  =  ( { ∅ }  ∖  { ∅ } ) | 
						
							| 5 |  | difid | ⊢ ( { ∅ }  ∖  { ∅ } )  =  ∅ | 
						
							| 6 | 4 5 | eqtri | ⊢ ( 𝒫  ∅  ∖  { ∅ } )  =  ∅ | 
						
							| 7 | 2 6 | feq23i | ⊢ ( ∅ : dom  ∅ ⟶ ( 𝒫  ∅  ∖  { ∅ } )  ↔  ∅ : ∅ ⟶ ∅ ) | 
						
							| 8 | 1 7 | mpbir | ⊢ ∅ : dom  ∅ ⟶ ( 𝒫  ∅  ∖  { ∅ } ) | 
						
							| 9 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 10 |  | vtxval0 | ⊢ ( Vtx ‘ ∅ )  =  ∅ | 
						
							| 11 | 10 | eqcomi | ⊢ ∅  =  ( Vtx ‘ ∅ ) | 
						
							| 12 |  | iedgval0 | ⊢ ( iEdg ‘ ∅ )  =  ∅ | 
						
							| 13 | 12 | eqcomi | ⊢ ∅  =  ( iEdg ‘ ∅ ) | 
						
							| 14 | 11 13 | isuhgr | ⊢ ( ∅  ∈  V  →  ( ∅  ∈  UHGraph  ↔  ∅ : dom  ∅ ⟶ ( 𝒫  ∅  ∖  { ∅ } ) ) ) | 
						
							| 15 | 9 14 | ax-mp | ⊢ ( ∅  ∈  UHGraph  ↔  ∅ : dom  ∅ ⟶ ( 𝒫  ∅  ∖  { ∅ } ) ) | 
						
							| 16 | 8 15 | mpbir | ⊢ ∅  ∈  UHGraph |