Step |
Hyp |
Ref |
Expression |
1 |
|
uhgr0e.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
2 |
|
uhgr0e.e |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = ∅ ) |
3 |
|
f0 |
⊢ ∅ : ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) |
4 |
|
dm0 |
⊢ dom ∅ = ∅ |
5 |
4
|
feq2i |
⊢ ( ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ∅ : ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
6 |
3 5
|
mpbir |
⊢ ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) |
7 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
9 |
7 8
|
isuhgr |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ UHGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → ( 𝐺 ∈ UHGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
11 |
|
id |
⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → ( iEdg ‘ 𝐺 ) = ∅ ) |
12 |
|
dmeq |
⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → dom ( iEdg ‘ 𝐺 ) = dom ∅ ) |
13 |
11 12
|
feq12d |
⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
14 |
2 13
|
syl |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
15 |
10 14
|
bitrd |
⊢ ( 𝜑 → ( 𝐺 ∈ UHGraph ↔ ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
16 |
6 15
|
mpbiri |
⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |