| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgr0e.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑊 ) | 
						
							| 2 |  | uhgr0e.e | ⊢ ( 𝜑  →  ( iEdg ‘ 𝐺 )  =  ∅ ) | 
						
							| 3 |  | f0 | ⊢ ∅ : ∅ ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) | 
						
							| 4 |  | dm0 | ⊢ dom  ∅  =  ∅ | 
						
							| 5 | 4 | feq2i | ⊢ ( ∅ : dom  ∅ ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ↔  ∅ : ∅ ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) | 
						
							| 6 | 3 5 | mpbir | ⊢ ∅ : dom  ∅ ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) | 
						
							| 7 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 8 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 9 | 7 8 | isuhgr | ⊢ ( 𝐺  ∈  𝑊  →  ( 𝐺  ∈  UHGraph  ↔  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) ) | 
						
							| 10 | 1 9 | syl | ⊢ ( 𝜑  →  ( 𝐺  ∈  UHGraph  ↔  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) ) | 
						
							| 11 |  | id | ⊢ ( ( iEdg ‘ 𝐺 )  =  ∅  →  ( iEdg ‘ 𝐺 )  =  ∅ ) | 
						
							| 12 |  | dmeq | ⊢ ( ( iEdg ‘ 𝐺 )  =  ∅  →  dom  ( iEdg ‘ 𝐺 )  =  dom  ∅ ) | 
						
							| 13 | 11 12 | feq12d | ⊢ ( ( iEdg ‘ 𝐺 )  =  ∅  →  ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ↔  ∅ : dom  ∅ ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) ) | 
						
							| 14 | 2 13 | syl | ⊢ ( 𝜑  →  ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ↔  ∅ : dom  ∅ ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) ) | 
						
							| 15 | 10 14 | bitrd | ⊢ ( 𝜑  →  ( 𝐺  ∈  UHGraph  ↔  ∅ : dom  ∅ ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) ) | 
						
							| 16 | 6 15 | mpbiri | ⊢ ( 𝜑  →  𝐺  ∈  UHGraph ) |