| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | uhgr0vsize0 | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  =  0 )  →  ( ♯ ‘ ( Edg ‘ 𝐺 ) )  =  0 ) | 
						
							| 4 |  | fvex | ⊢ ( Edg ‘ 𝐺 )  ∈  V | 
						
							| 5 |  | hasheq0 | ⊢ ( ( Edg ‘ 𝐺 )  ∈  V  →  ( ( ♯ ‘ ( Edg ‘ 𝐺 ) )  =  0  ↔  ( Edg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( ( ♯ ‘ ( Edg ‘ 𝐺 ) )  =  0  ↔  ( Edg ‘ 𝐺 )  =  ∅ ) | 
						
							| 7 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 8 |  | eleq1 | ⊢ ( ( Edg ‘ 𝐺 )  =  ∅  →  ( ( Edg ‘ 𝐺 )  ∈  Fin  ↔  ∅  ∈  Fin ) ) | 
						
							| 9 | 7 8 | mpbiri | ⊢ ( ( Edg ‘ 𝐺 )  =  ∅  →  ( Edg ‘ 𝐺 )  ∈  Fin ) | 
						
							| 10 | 6 9 | sylbi | ⊢ ( ( ♯ ‘ ( Edg ‘ 𝐺 ) )  =  0  →  ( Edg ‘ 𝐺 )  ∈  Fin ) | 
						
							| 11 | 3 10 | syl | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  =  0 )  →  ( Edg ‘ 𝐺 )  ∈  Fin ) |