| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | uhgrf | ⊢ ( 𝐺  ∈  UHGraph  →  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) | 
						
							| 4 |  | pweq | ⊢ ( ( Vtx ‘ 𝐺 )  =  ∅  →  𝒫  ( Vtx ‘ 𝐺 )  =  𝒫  ∅ ) | 
						
							| 5 | 4 | difeq1d | ⊢ ( ( Vtx ‘ 𝐺 )  =  ∅  →  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  =  ( 𝒫  ∅  ∖  { ∅ } ) ) | 
						
							| 6 |  | pw0 | ⊢ 𝒫  ∅  =  { ∅ } | 
						
							| 7 | 6 | difeq1i | ⊢ ( 𝒫  ∅  ∖  { ∅ } )  =  ( { ∅ }  ∖  { ∅ } ) | 
						
							| 8 |  | difid | ⊢ ( { ∅ }  ∖  { ∅ } )  =  ∅ | 
						
							| 9 | 7 8 | eqtri | ⊢ ( 𝒫  ∅  ∖  { ∅ } )  =  ∅ | 
						
							| 10 | 5 9 | eqtrdi | ⊢ ( ( Vtx ‘ 𝐺 )  =  ∅  →  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  =  ∅ ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  →  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  =  ∅ ) | 
						
							| 12 | 11 | feq3d | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  →  ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ↔  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ∅ ) ) | 
						
							| 13 |  | f00 | ⊢ ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ∅  ↔  ( ( iEdg ‘ 𝐺 )  =  ∅  ∧  dom  ( iEdg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 14 | 13 | simplbi | ⊢ ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ∅  →  ( iEdg ‘ 𝐺 )  =  ∅ ) | 
						
							| 15 | 12 14 | biimtrdi | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  →  ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  →  ( iEdg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 16 | 3 15 | syl5 | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  →  ( 𝐺  ∈  UHGraph  →  ( iEdg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 17 |  | simpl | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  ∈  𝑊 ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  ( iEdg ‘ 𝐺 )  =  ∅ ) | 
						
							| 19 | 17 18 | uhgr0e | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  ∈  UHGraph ) | 
						
							| 20 | 19 | ex | ⊢ ( 𝐺  ∈  𝑊  →  ( ( iEdg ‘ 𝐺 )  =  ∅  →  𝐺  ∈  UHGraph ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  →  ( ( iEdg ‘ 𝐺 )  =  ∅  →  𝐺  ∈  UHGraph ) ) | 
						
							| 22 | 16 21 | impbid | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( Vtx ‘ 𝐺 )  =  ∅ )  →  ( 𝐺  ∈  UHGraph  ↔  ( iEdg ‘ 𝐺 )  =  ∅ ) ) |