Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
3 |
1 2
|
uhgrf |
⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
4 |
|
pweq |
⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → 𝒫 ( Vtx ‘ 𝐺 ) = 𝒫 ∅ ) |
5 |
4
|
difeq1d |
⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) = ( 𝒫 ∅ ∖ { ∅ } ) ) |
6 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
7 |
6
|
difeq1i |
⊢ ( 𝒫 ∅ ∖ { ∅ } ) = ( { ∅ } ∖ { ∅ } ) |
8 |
|
difid |
⊢ ( { ∅ } ∖ { ∅ } ) = ∅ |
9 |
7 8
|
eqtri |
⊢ ( 𝒫 ∅ ∖ { ∅ } ) = ∅ |
10 |
5 9
|
eqtrdi |
⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) = ∅ ) |
11 |
10
|
adantl |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) = ∅ ) |
12 |
11
|
feq3d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ ) ) |
13 |
|
f00 |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ ↔ ( ( iEdg ‘ 𝐺 ) = ∅ ∧ dom ( iEdg ‘ 𝐺 ) = ∅ ) ) |
14 |
13
|
simplbi |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ → ( iEdg ‘ 𝐺 ) = ∅ ) |
15 |
12 14
|
syl6bi |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) = ∅ ) ) |
16 |
3 15
|
syl5 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) = ∅ ) ) |
17 |
|
simpl |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ 𝑊 ) |
18 |
|
simpr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( iEdg ‘ 𝐺 ) = ∅ ) |
19 |
17 18
|
uhgr0e |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ UHGraph ) |
20 |
19
|
ex |
⊢ ( 𝐺 ∈ 𝑊 → ( ( iEdg ‘ 𝐺 ) = ∅ → 𝐺 ∈ UHGraph ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( ( iEdg ‘ 𝐺 ) = ∅ → 𝐺 ∈ UHGraph ) ) |
22 |
16 21
|
impbid |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝐺 ∈ UHGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |