| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgr0v0e.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | uhgr0v0e.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | uhgr0v0e | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑉  =  ∅ )  →  𝐸  =  ∅ ) | 
						
							| 4 | 3 | ex | ⊢ ( 𝐺  ∈  UHGraph  →  ( 𝑉  =  ∅  →  𝐸  =  ∅ ) ) | 
						
							| 5 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 6 |  | hasheq0 | ⊢ ( 𝑉  ∈  V  →  ( ( ♯ ‘ 𝑉 )  =  0  ↔  𝑉  =  ∅ ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( ( ♯ ‘ 𝑉 )  =  0  ↔  𝑉  =  ∅ ) | 
						
							| 8 | 2 | fvexi | ⊢ 𝐸  ∈  V | 
						
							| 9 |  | hasheq0 | ⊢ ( 𝐸  ∈  V  →  ( ( ♯ ‘ 𝐸 )  =  0  ↔  𝐸  =  ∅ ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( ( ♯ ‘ 𝐸 )  =  0  ↔  𝐸  =  ∅ ) | 
						
							| 11 | 4 7 10 | 3imtr4g | ⊢ ( 𝐺  ∈  UHGraph  →  ( ( ♯ ‘ 𝑉 )  =  0  →  ( ♯ ‘ 𝐸 )  =  0 ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  0 )  →  ( ♯ ‘ 𝐸 )  =  0 ) |