Step |
Hyp |
Ref |
Expression |
1 |
|
uhgr3cyclex.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
uhgr3cyclex.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
2
|
eleq2i |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
5 |
4
|
uhgredgiedgb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
6 |
3 5
|
syl5bb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
7 |
2
|
eleq2i |
⊢ ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) |
8 |
4
|
uhgredgiedgb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
9 |
7 8
|
syl5bb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
10 |
2
|
eleq2i |
⊢ ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) |
11 |
4
|
uhgredgiedgb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
12 |
10 11
|
syl5bb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
13 |
6 9 12
|
3anbi123d |
⊢ ( 𝐺 ∈ UHGraph → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
15 |
|
eqid |
⊢ 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 |
16 |
|
eqid |
⊢ 〈“ 𝑖 𝑗 𝑘 ”〉 = 〈“ 𝑖 𝑗 𝑘 ”〉 |
17 |
|
3simpa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
18 |
|
pm3.22 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) |
19 |
18
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) |
20 |
17 19
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) ) |
23 |
|
3simpa |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ) |
24 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
25 |
24
|
biimpi |
⊢ ( 𝐴 ≠ 𝐵 → 𝐵 ≠ 𝐴 ) |
26 |
25
|
anim1ci |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ) ) |
27 |
26
|
3adant2 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ) ) |
28 |
|
necom |
⊢ ( 𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴 ) |
29 |
28
|
biimpi |
⊢ ( 𝐴 ≠ 𝐶 → 𝐶 ≠ 𝐴 ) |
30 |
29
|
3ad2ant2 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ≠ 𝐴 ) |
31 |
23 27 30
|
3jca |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ) ∧ 𝐶 ≠ 𝐴 ) ) |
32 |
31
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ) ∧ 𝐶 ≠ 𝐴 ) ) |
33 |
32
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ) ∧ 𝐶 ≠ 𝐴 ) ) |
34 |
|
eqimss |
⊢ ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
36 |
35
|
3ad2ant3 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
37 |
|
eqimss |
⊢ ( { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
38 |
37
|
adantl |
⊢ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) → { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
39 |
38
|
3ad2ant1 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
40 |
|
eqimss |
⊢ ( { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → { 𝐶 , 𝐴 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → { 𝐶 , 𝐴 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) |
42 |
41
|
3ad2ant2 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → { 𝐶 , 𝐴 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) |
43 |
36 39 42
|
3jca |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐶 , 𝐴 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
44 |
43
|
adantl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐶 , 𝐴 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
45 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ 𝑉 ) |
46 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
47 |
45 46
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) |
48 |
47 30
|
anim12i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝐶 ≠ 𝐴 ) ) |
49 |
48
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝐶 ≠ 𝐴 ) ) |
50 |
|
pm3.22 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) |
51 |
50
|
3adant2 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) |
52 |
1 2 4
|
uhgr3cyclexlem |
⊢ ( ( ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝐶 ≠ 𝐴 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) → 𝑖 ≠ 𝑗 ) |
53 |
49 51 52
|
syl2an |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑖 ≠ 𝑗 ) |
54 |
|
3simpc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
55 |
|
simp3 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
56 |
54 55
|
anim12i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝐵 ≠ 𝐶 ) ) |
57 |
56
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝐵 ≠ 𝐶 ) ) |
58 |
|
3simpc |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
59 |
1 2 4
|
uhgr3cyclexlem |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑘 ≠ 𝑖 ) |
60 |
59
|
necomd |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑖 ≠ 𝑘 ) |
61 |
57 58 60
|
syl2an |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑖 ≠ 𝑘 ) |
62 |
1 2 4
|
uhgr3cyclexlem |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) → 𝑗 ≠ 𝑘 ) |
63 |
62
|
exp31 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ≠ 𝐵 → ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → 𝑗 ≠ 𝑘 ) ) ) |
64 |
63
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ≠ 𝐵 → ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → 𝑗 ≠ 𝑘 ) ) ) |
65 |
64
|
com12 |
⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → 𝑗 ≠ 𝑘 ) ) ) |
66 |
65
|
3ad2ant1 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → 𝑗 ≠ 𝑘 ) ) ) |
67 |
66
|
impcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → 𝑗 ≠ 𝑘 ) ) |
68 |
67
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → 𝑗 ≠ 𝑘 ) ) |
69 |
68
|
com12 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → 𝑗 ≠ 𝑘 ) ) |
70 |
69
|
3adant3 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → 𝑗 ≠ 𝑘 ) ) |
71 |
70
|
impcom |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑗 ≠ 𝑘 ) |
72 |
53 61 71
|
3jca |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑖 ≠ 𝑗 ∧ 𝑖 ≠ 𝑘 ∧ 𝑗 ≠ 𝑘 ) ) |
73 |
|
eqidd |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝐴 = 𝐴 ) |
74 |
15 16 22 33 44 1 4 72 73
|
3cyclpd |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 〈“ 𝑖 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑖 𝑗 𝑘 ”〉 ) = 3 ∧ ( 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
75 |
|
s3cli |
⊢ 〈“ 𝑖 𝑗 𝑘 ”〉 ∈ Word V |
76 |
75
|
elexi |
⊢ 〈“ 𝑖 𝑗 𝑘 ”〉 ∈ V |
77 |
|
s4cli |
⊢ 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ∈ Word V |
78 |
77
|
elexi |
⊢ 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ∈ V |
79 |
|
breq12 |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 𝑘 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ) → ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ↔ 〈“ 𝑖 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ) ) |
80 |
|
fveqeq2 |
⊢ ( 𝑓 = 〈“ 𝑖 𝑗 𝑘 ”〉 → ( ( ♯ ‘ 𝑓 ) = 3 ↔ ( ♯ ‘ 〈“ 𝑖 𝑗 𝑘 ”〉 ) = 3 ) ) |
81 |
80
|
adantr |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 𝑘 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ) → ( ( ♯ ‘ 𝑓 ) = 3 ↔ ( ♯ ‘ 〈“ 𝑖 𝑗 𝑘 ”〉 ) = 3 ) ) |
82 |
|
fveq1 |
⊢ ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 → ( 𝑝 ‘ 0 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ‘ 0 ) ) |
83 |
82
|
eqeq1d |
⊢ ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 → ( ( 𝑝 ‘ 0 ) = 𝐴 ↔ ( 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
84 |
83
|
adantl |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 𝑘 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ) → ( ( 𝑝 ‘ 0 ) = 𝐴 ↔ ( 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
85 |
79 81 84
|
3anbi123d |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 𝑘 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ) → ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ↔ ( 〈“ 𝑖 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑖 𝑗 𝑘 ”〉 ) = 3 ∧ ( 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) ) |
86 |
76 78 85
|
spc2ev |
⊢ ( ( 〈“ 𝑖 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑖 𝑗 𝑘 ”〉 ) = 3 ∧ ( 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ‘ 0 ) = 𝐴 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |
87 |
74 86
|
syl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |
88 |
87
|
expcom |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) |
89 |
88
|
3exp |
⊢ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) → ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) ) ) |
90 |
89
|
rexlimiva |
⊢ ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) ) ) |
91 |
90
|
com12 |
⊢ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) ) ) |
92 |
91
|
rexlimiva |
⊢ ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) ) ) |
93 |
92
|
com13 |
⊢ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) ) ) |
94 |
93
|
rexlimiva |
⊢ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) ) ) |
95 |
94
|
3imp |
⊢ ( ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) |
96 |
95
|
com12 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ( ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) |
97 |
14 96
|
sylbid |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) |
98 |
97
|
3impia |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |