Metamath Proof Explorer


Theorem uhgredgrnv

Description: An edge of a hypergraph contains only vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 4-Jun-2021)

Ref Expression
Assertion uhgredgrnv ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁𝐸 ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 edguhgr ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ) → 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) )
2 elelpwi ( ( 𝑁𝐸𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) )
3 2 expcom ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( 𝑁𝐸𝑁 ∈ ( Vtx ‘ 𝐺 ) ) )
4 1 3 syl ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑁𝐸𝑁 ∈ ( Vtx ‘ 𝐺 ) ) )
5 4 3impia ( ( 𝐺 ∈ UHGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁𝐸 ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) )