Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrf.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
uhgrf.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
uhgreq12g.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
4 |
|
uhgreq12g.f |
⊢ 𝐹 = ( iEdg ‘ 𝐻 ) |
5 |
1 2
|
isuhgr |
⊢ ( 𝐺 ∈ 𝑋 → ( 𝐺 ∈ UHGraph ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝐺 ∈ UHGraph ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) ∧ ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) ) → ( 𝐺 ∈ UHGraph ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) → 𝐸 = 𝐹 ) |
9 |
8
|
dmeqd |
⊢ ( ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) → dom 𝐸 = dom 𝐹 ) |
10 |
|
pweq |
⊢ ( 𝑉 = 𝑊 → 𝒫 𝑉 = 𝒫 𝑊 ) |
11 |
10
|
difeq1d |
⊢ ( 𝑉 = 𝑊 → ( 𝒫 𝑉 ∖ { ∅ } ) = ( 𝒫 𝑊 ∖ { ∅ } ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) → ( 𝒫 𝑉 ∖ { ∅ } ) = ( 𝒫 𝑊 ∖ { ∅ } ) ) |
13 |
8 9 12
|
feq123d |
⊢ ( ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) → ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ 𝐹 : dom 𝐹 ⟶ ( 𝒫 𝑊 ∖ { ∅ } ) ) ) |
14 |
3 4
|
isuhgr |
⊢ ( 𝐻 ∈ 𝑌 → ( 𝐻 ∈ UHGraph ↔ 𝐹 : dom 𝐹 ⟶ ( 𝒫 𝑊 ∖ { ∅ } ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝐻 ∈ UHGraph ↔ 𝐹 : dom 𝐹 ⟶ ( 𝒫 𝑊 ∖ { ∅ } ) ) ) |
16 |
15
|
bicomd |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) → ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 𝑊 ∖ { ∅ } ) ↔ 𝐻 ∈ UHGraph ) ) |
17 |
13 16
|
sylan9bbr |
⊢ ( ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) ∧ ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) ) → ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ 𝐻 ∈ UHGraph ) ) |
18 |
7 17
|
bitrd |
⊢ ( ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) ∧ ( 𝑉 = 𝑊 ∧ 𝐸 = 𝐹 ) ) → ( 𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph ) ) |