| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrf.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | uhgrf.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | uhgreq12g.w | ⊢ 𝑊  =  ( Vtx ‘ 𝐻 ) | 
						
							| 4 |  | uhgreq12g.f | ⊢ 𝐹  =  ( iEdg ‘ 𝐻 ) | 
						
							| 5 | 1 2 | isuhgr | ⊢ ( 𝐺  ∈  𝑋  →  ( 𝐺  ∈  UHGraph  ↔  𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐺  ∈  𝑋  ∧  𝐻  ∈  𝑌 )  →  ( 𝐺  ∈  UHGraph  ↔  𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝐺  ∈  𝑋  ∧  𝐻  ∈  𝑌 )  ∧  ( 𝑉  =  𝑊  ∧  𝐸  =  𝐹 ) )  →  ( 𝐺  ∈  UHGraph  ↔  𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑉  =  𝑊  ∧  𝐸  =  𝐹 )  →  𝐸  =  𝐹 ) | 
						
							| 9 | 8 | dmeqd | ⊢ ( ( 𝑉  =  𝑊  ∧  𝐸  =  𝐹 )  →  dom  𝐸  =  dom  𝐹 ) | 
						
							| 10 |  | pweq | ⊢ ( 𝑉  =  𝑊  →  𝒫  𝑉  =  𝒫  𝑊 ) | 
						
							| 11 | 10 | difeq1d | ⊢ ( 𝑉  =  𝑊  →  ( 𝒫  𝑉  ∖  { ∅ } )  =  ( 𝒫  𝑊  ∖  { ∅ } ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑉  =  𝑊  ∧  𝐸  =  𝐹 )  →  ( 𝒫  𝑉  ∖  { ∅ } )  =  ( 𝒫  𝑊  ∖  { ∅ } ) ) | 
						
							| 13 | 8 9 12 | feq123d | ⊢ ( ( 𝑉  =  𝑊  ∧  𝐸  =  𝐹 )  →  ( 𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } )  ↔  𝐹 : dom  𝐹 ⟶ ( 𝒫  𝑊  ∖  { ∅ } ) ) ) | 
						
							| 14 | 3 4 | isuhgr | ⊢ ( 𝐻  ∈  𝑌  →  ( 𝐻  ∈  UHGraph  ↔  𝐹 : dom  𝐹 ⟶ ( 𝒫  𝑊  ∖  { ∅ } ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝐺  ∈  𝑋  ∧  𝐻  ∈  𝑌 )  →  ( 𝐻  ∈  UHGraph  ↔  𝐹 : dom  𝐹 ⟶ ( 𝒫  𝑊  ∖  { ∅ } ) ) ) | 
						
							| 16 | 15 | bicomd | ⊢ ( ( 𝐺  ∈  𝑋  ∧  𝐻  ∈  𝑌 )  →  ( 𝐹 : dom  𝐹 ⟶ ( 𝒫  𝑊  ∖  { ∅ } )  ↔  𝐻  ∈  UHGraph ) ) | 
						
							| 17 | 13 16 | sylan9bbr | ⊢ ( ( ( 𝐺  ∈  𝑋  ∧  𝐻  ∈  𝑌 )  ∧  ( 𝑉  =  𝑊  ∧  𝐸  =  𝐹 ) )  →  ( 𝐸 : dom  𝐸 ⟶ ( 𝒫  𝑉  ∖  { ∅ } )  ↔  𝐻  ∈  UHGraph ) ) | 
						
							| 18 | 7 17 | bitrd | ⊢ ( ( ( 𝐺  ∈  𝑋  ∧  𝐻  ∈  𝑌 )  ∧  ( 𝑉  =  𝑊  ∧  𝐸  =  𝐹 ) )  →  ( 𝐺  ∈  UHGraph  ↔  𝐻  ∈  UHGraph ) ) |