Metamath Proof Explorer


Theorem uhgrf

Description: The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 9-Oct-2020)

Ref Expression
Hypotheses uhgrf.v 𝑉 = ( Vtx ‘ 𝐺 )
uhgrf.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion uhgrf ( 𝐺 ∈ UHGraph → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) )

Proof

Step Hyp Ref Expression
1 uhgrf.v 𝑉 = ( Vtx ‘ 𝐺 )
2 uhgrf.e 𝐸 = ( iEdg ‘ 𝐺 )
3 1 2 isuhgr ( 𝐺 ∈ UHGraph → ( 𝐺 ∈ UHGraph ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) )
4 3 ibi ( 𝐺 ∈ UHGraph → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) )