Metamath Proof Explorer


Theorem uhgrfun

Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 15-Dec-2020)

Ref Expression
Hypothesis uhgrfun.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion uhgrfun ( 𝐺 ∈ UHGraph → Fun 𝐸 )

Proof

Step Hyp Ref Expression
1 uhgrfun.e 𝐸 = ( iEdg ‘ 𝐺 )
2 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
3 2 1 uhgrf ( 𝐺 ∈ UHGraph → 𝐸 : dom 𝐸 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) )
4 3 ffund ( 𝐺 ∈ UHGraph → Fun 𝐸 )