Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrissubgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝑆 ) |
2 |
|
uhgrissubgr.a |
⊢ 𝐴 = ( Vtx ‘ 𝐺 ) |
3 |
|
uhgrissubgr.i |
⊢ 𝐼 = ( iEdg ‘ 𝑆 ) |
4 |
|
uhgrissubgr.b |
⊢ 𝐵 = ( iEdg ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) |
6 |
1 2 3 4 5
|
subgrprop2 |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) |
7 |
|
3simpa |
⊢ ( ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) |
9 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) ∧ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) → 𝑉 ⊆ 𝐴 ) |
10 |
|
simp2 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) → Fun 𝐵 ) |
11 |
|
simpr |
⊢ ( ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) → 𝐼 ⊆ 𝐵 ) |
12 |
|
funssres |
⊢ ( ( Fun 𝐵 ∧ 𝐼 ⊆ 𝐵 ) → ( 𝐵 ↾ dom 𝐼 ) = 𝐼 ) |
13 |
10 11 12
|
syl2an |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) ∧ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) → ( 𝐵 ↾ dom 𝐼 ) = 𝐼 ) |
14 |
13
|
eqcomd |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) ∧ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) → 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ) |
15 |
|
edguhgr |
⊢ ( ( 𝑆 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝑆 ) ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) |
16 |
15
|
ex |
⊢ ( 𝑆 ∈ UHGraph → ( 𝑒 ∈ ( Edg ‘ 𝑆 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
17 |
1
|
pweqi |
⊢ 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝑆 ) |
18 |
17
|
eleq2i |
⊢ ( 𝑒 ∈ 𝒫 𝑉 ↔ 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) |
19 |
16 18
|
syl6ibr |
⊢ ( 𝑆 ∈ UHGraph → ( 𝑒 ∈ ( Edg ‘ 𝑆 ) → 𝑒 ∈ 𝒫 𝑉 ) ) |
20 |
19
|
ssrdv |
⊢ ( 𝑆 ∈ UHGraph → ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) |
21 |
20
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) → ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) ∧ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) → ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) |
23 |
1 2 3 4 5
|
issubgr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) ) |
24 |
23
|
3adant2 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) ∧ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) ) |
26 |
9 14 22 25
|
mpbir3and |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) ∧ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) → 𝑆 SubGraph 𝐺 ) |
27 |
26
|
ex |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) → ( ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) → 𝑆 SubGraph 𝐺 ) ) |
28 |
8 27
|
impbid2 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) ) |