Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrfun.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
2 1
|
uhgrf |
⊢ ( 𝐺 ∈ UHGraph → 𝐸 : dom 𝐸 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
4 |
|
fndm |
⊢ ( 𝐸 Fn 𝐴 → dom 𝐸 = 𝐴 ) |
5 |
4
|
feq2d |
⊢ ( 𝐸 Fn 𝐴 → ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ 𝐸 : 𝐴 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
6 |
3 5
|
syl5ibcom |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐸 Fn 𝐴 → 𝐸 : 𝐴 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
7 |
6
|
imp |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ) → 𝐸 : 𝐴 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
8 |
7
|
ffvelrnda |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ) ∧ 𝐹 ∈ 𝐴 ) → ( 𝐸 ‘ 𝐹 ) ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
9 |
8
|
3impa |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴 ) → ( 𝐸 ‘ 𝐹 ) ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
10 |
|
eldifsni |
⊢ ( ( 𝐸 ‘ 𝐹 ) ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( 𝐸 ‘ 𝐹 ) ≠ ∅ ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴 ) → ( 𝐸 ‘ 𝐹 ) ≠ ∅ ) |