| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrfun.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 | 2 1 | uhgrf | ⊢ ( 𝐺  ∈  UHGraph  →  𝐸 : dom  𝐸 ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) | 
						
							| 4 |  | fndm | ⊢ ( 𝐸  Fn  𝐴  →  dom  𝐸  =  𝐴 ) | 
						
							| 5 | 4 | feq2d | ⊢ ( 𝐸  Fn  𝐴  →  ( 𝐸 : dom  𝐸 ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ↔  𝐸 : 𝐴 ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) ) | 
						
							| 6 | 3 5 | syl5ibcom | ⊢ ( 𝐺  ∈  UHGraph  →  ( 𝐸  Fn  𝐴  →  𝐸 : 𝐴 ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) ) | 
						
							| 7 | 6 | imp | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐸  Fn  𝐴 )  →  𝐸 : 𝐴 ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) | 
						
							| 8 | 7 | ffvelcdmda | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  𝐸  Fn  𝐴 )  ∧  𝐹  ∈  𝐴 )  →  ( 𝐸 ‘ 𝐹 )  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) | 
						
							| 9 | 8 | 3impa | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐸  Fn  𝐴  ∧  𝐹  ∈  𝐴 )  →  ( 𝐸 ‘ 𝐹 )  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) | 
						
							| 10 |  | eldifsni | ⊢ ( ( 𝐸 ‘ 𝐹 )  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  →  ( 𝐸 ‘ 𝐹 )  ≠  ∅ ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝐸  Fn  𝐴  ∧  𝐹  ∈  𝐴 )  →  ( 𝐸 ‘ 𝐹 )  ≠  ∅ ) |