Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
nbuhgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ V ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
4 |
3
|
adantlr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) ∧ 𝑁 ∈ V ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
5 |
|
df-nel |
⊢ ( 𝑁 ∉ 𝑒 ↔ ¬ 𝑁 ∈ 𝑒 ) |
6 |
|
prssg |
⊢ ( ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ↔ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
7 |
|
simpl |
⊢ ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) → 𝑁 ∈ 𝑒 ) |
8 |
6 7
|
syl6bir |
⊢ ( ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 → 𝑁 ∈ 𝑒 ) ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 → 𝑁 ∈ 𝑒 ) ) |
10 |
9
|
con3d |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( ¬ 𝑁 ∈ 𝑒 → ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
11 |
5 10
|
syl5bi |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑁 ∉ 𝑒 → ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
12 |
11
|
ralimdva |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) → ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 → ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
14 |
|
ralnex |
⊢ ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
15 |
13 14
|
sylib |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
16 |
15
|
expcom |
⊢ ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 → ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
17 |
16
|
expd |
⊢ ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 → ( 𝐺 ∈ UHGraph → ( ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) ) |
18 |
17
|
impcom |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ( ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
19 |
18
|
expdimp |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) ∧ 𝑁 ∈ V ) → ( 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
20 |
19
|
ralrimiv |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) ∧ 𝑁 ∈ V ) → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
21 |
|
rabeq0 |
⊢ ( { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } = ∅ ↔ ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
22 |
20 21
|
sylibr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) ∧ 𝑁 ∈ V ) → { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } = ∅ ) |
23 |
4 22
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) ∧ 𝑁 ∈ V ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
24 |
23
|
expcom |
⊢ ( 𝑁 ∈ V → ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) ) |
25 |
|
id |
⊢ ( ¬ 𝑁 ∈ V → ¬ 𝑁 ∈ V ) |
26 |
25
|
intnand |
⊢ ( ¬ 𝑁 ∈ V → ¬ ( 𝐺 ∈ V ∧ 𝑁 ∈ V ) ) |
27 |
|
nbgrprc0 |
⊢ ( ¬ ( 𝐺 ∈ V ∧ 𝑁 ∈ V ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
28 |
26 27
|
syl |
⊢ ( ¬ 𝑁 ∈ V → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
29 |
28
|
a1d |
⊢ ( ¬ 𝑁 ∈ V → ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) ) |
30 |
24 29
|
pm2.61i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁 ∉ 𝑒 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |