Metamath Proof Explorer


Theorem uhgrnbgr0nb

Description: A vertex which is not endpoint of an edge has no neighbor in a hypergraph. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 26-Oct-2020)

Ref Expression
Assertion uhgrnbgr0nb ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
2 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
3 1 2 nbuhgr ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ V ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } )
4 3 adantlr ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 ) ∧ 𝑁 ∈ V ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } )
5 df-nel ( 𝑁𝑒 ↔ ¬ 𝑁𝑒 )
6 prssg ( ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ( ( 𝑁𝑒𝑛𝑒 ) ↔ { 𝑁 , 𝑛 } ⊆ 𝑒 ) )
7 simpl ( ( 𝑁𝑒𝑛𝑒 ) → 𝑁𝑒 )
8 6 7 syl6bir ( ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒𝑁𝑒 ) )
9 8 ad2antlr ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒𝑁𝑒 ) )
10 9 con3d ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( ¬ 𝑁𝑒 → ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ) )
11 5 10 syl5bi ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑁𝑒 → ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ) )
12 11 ralimdva ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) → ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 → ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ) )
13 12 imp ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 ) → ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 )
14 ralnex ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ¬ { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 )
15 13 14 sylib ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 )
16 15 expcom ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 → ( ( 𝐺 ∈ UHGraph ∧ ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) )
17 16 expd ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 → ( 𝐺 ∈ UHGraph → ( ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) )
18 17 impcom ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 ) → ( ( 𝑁 ∈ V ∧ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) )
19 18 expdimp ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 ) ∧ 𝑁 ∈ V ) → ( 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ) )
20 19 ralrimiv ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 ) ∧ 𝑁 ∈ V ) → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 )
21 rabeq0 ( { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } = ∅ ↔ ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 )
22 20 21 sylibr ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 ) ∧ 𝑁 ∈ V ) → { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } = ∅ )
23 4 22 eqtrd ( ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 ) ∧ 𝑁 ∈ V ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ )
24 23 expcom ( 𝑁 ∈ V → ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) )
25 id ( ¬ 𝑁 ∈ V → ¬ 𝑁 ∈ V )
26 25 intnand ( ¬ 𝑁 ∈ V → ¬ ( 𝐺 ∈ V ∧ 𝑁 ∈ V ) )
27 nbgrprc0 ( ¬ ( 𝐺 ∈ V ∧ 𝑁 ∈ V ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ )
28 26 27 syl ( ¬ 𝑁 ∈ V → ( 𝐺 NeighbVtx 𝑁 ) = ∅ )
29 28 a1d ( ¬ 𝑁 ∈ V → ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) )
30 24 29 pm2.61i ( ( 𝐺 ∈ UHGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝑁𝑒 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ )