Metamath Proof Explorer
Description: A spanning subgraph S of a hypergraph G is a hypergraph.
(Contributed by AV, 11-Oct-2020) (Proof shortened by AV, 18-Nov-2020)
|
|
Ref |
Expression |
|
Hypotheses |
uhgrspan.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
|
|
uhgrspan.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
|
|
uhgrspan.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
|
|
uhgrspan.q |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
|
|
uhgrspan.r |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) |
|
|
uhgrspan.g |
⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
|
Assertion |
uhgrspan |
⊢ ( 𝜑 → 𝑆 ∈ UHGraph ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrspan.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
uhgrspan.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
uhgrspan.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
4 |
|
uhgrspan.q |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
5 |
|
uhgrspan.r |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) |
6 |
|
uhgrspan.g |
⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
7 |
1 2 3 4 5 6
|
uhgrspansubgr |
⊢ ( 𝜑 → 𝑆 SubGraph 𝐺 ) |
8 |
|
subuhgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UHGraph ) |
9 |
6 7 8
|
syl2anc |
⊢ ( 𝜑 → 𝑆 ∈ UHGraph ) |