Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrspan1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
uhgrspan1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
uhgrspan1.f |
⊢ 𝐹 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ ( 𝐼 ‘ 𝑖 ) } |
4 |
|
uhgrspan1.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 |
5 |
|
difssd |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑉 ∖ { 𝑁 } ) ⊆ 𝑉 ) |
6 |
1 2 3 4
|
uhgrspan1lem3 |
⊢ ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ 𝐹 ) |
7 |
|
resresdm |
⊢ ( ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ 𝐹 ) → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
8 |
6 7
|
mp1i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
9 |
2
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
10 |
|
fvelima |
⊢ ( ( Fun 𝐼 ∧ 𝑐 ∈ ( 𝐼 “ 𝐹 ) ) → ∃ 𝑗 ∈ 𝐹 ( 𝐼 ‘ 𝑗 ) = 𝑐 ) |
11 |
10
|
ex |
⊢ ( Fun 𝐼 → ( 𝑐 ∈ ( 𝐼 “ 𝐹 ) → ∃ 𝑗 ∈ 𝐹 ( 𝐼 ‘ 𝑗 ) = 𝑐 ) ) |
12 |
9 11
|
syl |
⊢ ( 𝐺 ∈ UHGraph → ( 𝑐 ∈ ( 𝐼 “ 𝐹 ) → ∃ 𝑗 ∈ 𝐹 ( 𝐼 ‘ 𝑗 ) = 𝑐 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑐 ∈ ( 𝐼 “ 𝐹 ) → ∃ 𝑗 ∈ 𝐹 ( 𝐼 ‘ 𝑗 ) = 𝑐 ) ) |
14 |
|
eqidd |
⊢ ( 𝑖 = 𝑗 → 𝑁 = 𝑁 ) |
15 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐼 ‘ 𝑖 ) = ( 𝐼 ‘ 𝑗 ) ) |
16 |
14 15
|
neleq12d |
⊢ ( 𝑖 = 𝑗 → ( 𝑁 ∉ ( 𝐼 ‘ 𝑖 ) ↔ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) |
17 |
16 3
|
elrab2 |
⊢ ( 𝑗 ∈ 𝐹 ↔ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) |
18 |
|
fvexd |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) → ( 𝐼 ‘ 𝑗 ) ∈ V ) |
19 |
1 2
|
uhgrss |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑗 ) ⊆ 𝑉 ) |
20 |
19
|
ad2ant2r |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) → ( 𝐼 ‘ 𝑗 ) ⊆ 𝑉 ) |
21 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) → 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) |
22 |
|
elpwdifsn |
⊢ ( ( ( 𝐼 ‘ 𝑗 ) ∈ V ∧ ( 𝐼 ‘ 𝑗 ) ⊆ 𝑉 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) → ( 𝐼 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
23 |
18 20 21 22
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) → ( 𝐼 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
24 |
|
eleq1 |
⊢ ( 𝑐 = ( 𝐼 ‘ 𝑗 ) → ( 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
25 |
24
|
eqcoms |
⊢ ( ( 𝐼 ‘ 𝑗 ) = 𝑐 → ( 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
26 |
23 25
|
syl5ibrcom |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑐 → 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
27 |
26
|
ex |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑐 → 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) ) |
28 |
17 27
|
syl5bi |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑗 ∈ 𝐹 → ( ( 𝐼 ‘ 𝑗 ) = 𝑐 → 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) ) |
29 |
28
|
rexlimdv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∃ 𝑗 ∈ 𝐹 ( 𝐼 ‘ 𝑗 ) = 𝑐 → 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
30 |
13 29
|
syld |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑐 ∈ ( 𝐼 “ 𝐹 ) → 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
31 |
30
|
ssrdv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 “ 𝐹 ) ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
32 |
|
opex |
⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 ∈ V |
33 |
4 32
|
eqeltri |
⊢ 𝑆 ∈ V |
34 |
33
|
a1i |
⊢ ( 𝑁 ∈ 𝑉 → 𝑆 ∈ V ) |
35 |
1 2 3 4
|
uhgrspan1lem2 |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
36 |
35
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
37 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
38 |
6
|
rneqi |
⊢ ran ( iEdg ‘ 𝑆 ) = ran ( 𝐼 ↾ 𝐹 ) |
39 |
|
edgval |
⊢ ( Edg ‘ 𝑆 ) = ran ( iEdg ‘ 𝑆 ) |
40 |
|
df-ima |
⊢ ( 𝐼 “ 𝐹 ) = ran ( 𝐼 ↾ 𝐹 ) |
41 |
38 39 40
|
3eqtr4ri |
⊢ ( 𝐼 “ 𝐹 ) = ( Edg ‘ 𝑆 ) |
42 |
36 1 37 2 41
|
issubgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ∈ V ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( 𝑉 ∖ { 𝑁 } ) ⊆ 𝑉 ∧ ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝐼 “ 𝐹 ) ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) ) |
43 |
34 42
|
sylan2 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( 𝑉 ∖ { 𝑁 } ) ⊆ 𝑉 ∧ ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝐼 “ 𝐹 ) ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) ) |
44 |
5 8 31 43
|
mpbir3and |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 SubGraph 𝐺 ) |