| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrspan1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
uhgrspan1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
uhgrspan1.f |
⊢ 𝐹 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ ( 𝐼 ‘ 𝑖 ) } |
| 4 |
|
uhgrspan1.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 |
| 5 |
4
|
fveq2i |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 ) |
| 6 |
1 2 3
|
uhgrspan1lem1 |
⊢ ( ( 𝑉 ∖ { 𝑁 } ) ∈ V ∧ ( 𝐼 ↾ 𝐹 ) ∈ V ) |
| 7 |
|
opiedgfv |
⊢ ( ( ( 𝑉 ∖ { 𝑁 } ) ∈ V ∧ ( 𝐼 ↾ 𝐹 ) ∈ V ) → ( iEdg ‘ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 ) = ( 𝐼 ↾ 𝐹 ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( iEdg ‘ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 ) = ( 𝐼 ↾ 𝐹 ) |
| 9 |
5 8
|
eqtri |
⊢ ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ 𝐹 ) |