Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrspanop.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
uhgrspanop.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
opex |
⊢ 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ∈ V |
4 |
3
|
a1i |
⊢ ( 𝐺 ∈ UHGraph → 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ∈ V ) |
5 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
6 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
7 |
6
|
resex |
⊢ ( 𝐸 ↾ 𝐴 ) ∈ V |
8 |
5 7
|
opvtxfvi |
⊢ ( Vtx ‘ 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ) = 𝑉 |
9 |
8
|
a1i |
⊢ ( 𝐺 ∈ UHGraph → ( Vtx ‘ 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ) = 𝑉 ) |
10 |
5 7
|
opiedgfvi |
⊢ ( iEdg ‘ 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ) = ( 𝐸 ↾ 𝐴 ) |
11 |
10
|
a1i |
⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ) = ( 𝐸 ↾ 𝐴 ) ) |
12 |
|
id |
⊢ ( 𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph ) |
13 |
1 2 4 9 11 12
|
uhgrspan |
⊢ ( 𝐺 ∈ UHGraph → 〈 𝑉 , ( 𝐸 ↾ 𝐴 ) 〉 ∈ UHGraph ) |