Metamath Proof Explorer


Theorem uhgrspanop

Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 11-Oct-2020)

Ref Expression
Hypotheses uhgrspanop.v 𝑉 = ( Vtx ‘ 𝐺 )
uhgrspanop.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion uhgrspanop ( 𝐺 ∈ UHGraph → ⟨ 𝑉 , ( 𝐸𝐴 ) ⟩ ∈ UHGraph )

Proof

Step Hyp Ref Expression
1 uhgrspanop.v 𝑉 = ( Vtx ‘ 𝐺 )
2 uhgrspanop.e 𝐸 = ( iEdg ‘ 𝐺 )
3 opex 𝑉 , ( 𝐸𝐴 ) ⟩ ∈ V
4 3 a1i ( 𝐺 ∈ UHGraph → ⟨ 𝑉 , ( 𝐸𝐴 ) ⟩ ∈ V )
5 1 fvexi 𝑉 ∈ V
6 2 fvexi 𝐸 ∈ V
7 6 resex ( 𝐸𝐴 ) ∈ V
8 5 7 opvtxfvi ( Vtx ‘ ⟨ 𝑉 , ( 𝐸𝐴 ) ⟩ ) = 𝑉
9 8 a1i ( 𝐺 ∈ UHGraph → ( Vtx ‘ ⟨ 𝑉 , ( 𝐸𝐴 ) ⟩ ) = 𝑉 )
10 5 7 opiedgfvi ( iEdg ‘ ⟨ 𝑉 , ( 𝐸𝐴 ) ⟩ ) = ( 𝐸𝐴 )
11 10 a1i ( 𝐺 ∈ UHGraph → ( iEdg ‘ ⟨ 𝑉 , ( 𝐸𝐴 ) ⟩ ) = ( 𝐸𝐴 ) )
12 id ( 𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph )
13 1 2 4 9 11 12 uhgrspan ( 𝐺 ∈ UHGraph → ⟨ 𝑉 , ( 𝐸𝐴 ) ⟩ ∈ UHGraph )