Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrspan.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
uhgrspan.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
uhgrspan.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
4 |
|
uhgrspan.q |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
5 |
|
uhgrspan.r |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) |
6 |
|
uhgrspan.g |
⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
7 |
|
ssid |
⊢ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝑆 ) |
8 |
7 4
|
sseqtrid |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) ⊆ 𝑉 ) |
9 |
|
resss |
⊢ ( 𝐸 ↾ 𝐴 ) ⊆ 𝐸 |
10 |
5 9
|
eqsstrdi |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) ⊆ 𝐸 ) |
11 |
1 2 3 4 5 6
|
uhgrspansubgrlem |
⊢ ( 𝜑 → ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) |
12 |
2
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → Fun 𝐸 ) |
14 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
15 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
16 |
|
eqid |
⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) |
17 |
14 1 15 2 16
|
issubgr2 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ Fun 𝐸 ∧ 𝑆 ∈ 𝑊 ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝑆 ) ⊆ 𝑉 ∧ ( iEdg ‘ 𝑆 ) ⊆ 𝐸 ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) ) |
18 |
6 13 3 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝑆 ) ⊆ 𝑉 ∧ ( iEdg ‘ 𝑆 ) ⊆ 𝐸 ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) ) |
19 |
8 10 11 18
|
mpbir3and |
⊢ ( 𝜑 → 𝑆 SubGraph 𝐺 ) |