Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
⊢ ( Vtx ‘ 𝐺 ) ⊆ ( Vtx ‘ 𝐺 ) |
2 |
|
ssid |
⊢ ( iEdg ‘ 𝐺 ) ⊆ ( iEdg ‘ 𝐺 ) |
3 |
1 2
|
pm3.2i |
⊢ ( ( Vtx ‘ 𝐺 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) ⊆ ( iEdg ‘ 𝐺 ) ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
5 |
4
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
6 |
|
id |
⊢ ( 𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph ) |
7 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
8 |
7 7 4 4
|
uhgrissubgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ Fun ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UHGraph ) → ( 𝐺 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝐺 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) ) |
9 |
5 6 8
|
mpd3an23 |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝐺 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) ) |
10 |
3 9
|
mpbiri |
⊢ ( 𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺 ) |