Metamath Proof Explorer


Theorem uhgrun

Description: The union U of two (undirected) hypergraphs G and H with the same vertex set V is a hypergraph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 11-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses uhgrun.g ( 𝜑𝐺 ∈ UHGraph )
uhgrun.h ( 𝜑𝐻 ∈ UHGraph )
uhgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
uhgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
uhgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
uhgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
uhgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
uhgrun.u ( 𝜑𝑈𝑊 )
uhgrun.v ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
uhgrun.un ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸𝐹 ) )
Assertion uhgrun ( 𝜑𝑈 ∈ UHGraph )

Proof

Step Hyp Ref Expression
1 uhgrun.g ( 𝜑𝐺 ∈ UHGraph )
2 uhgrun.h ( 𝜑𝐻 ∈ UHGraph )
3 uhgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
4 uhgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
5 uhgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
6 uhgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
7 uhgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
8 uhgrun.u ( 𝜑𝑈𝑊 )
9 uhgrun.v ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
10 uhgrun.un ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸𝐹 ) )
11 5 3 uhgrf ( 𝐺 ∈ UHGraph → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) )
12 1 11 syl ( 𝜑𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) )
13 eqid ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 )
14 13 4 uhgrf ( 𝐻 ∈ UHGraph → 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) )
15 2 14 syl ( 𝜑𝐹 : dom 𝐹 ⟶ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) )
16 6 eqcomd ( 𝜑𝑉 = ( Vtx ‘ 𝐻 ) )
17 16 pweqd ( 𝜑 → 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐻 ) )
18 17 difeq1d ( 𝜑 → ( 𝒫 𝑉 ∖ { ∅ } ) = ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) )
19 18 feq3d ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ 𝐹 : dom 𝐹 ⟶ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ) )
20 15 19 mpbird ( 𝜑𝐹 : dom 𝐹 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) )
21 12 20 7 fun2d ( 𝜑 → ( 𝐸𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) )
22 10 dmeqd ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = dom ( 𝐸𝐹 ) )
23 dmun dom ( 𝐸𝐹 ) = ( dom 𝐸 ∪ dom 𝐹 )
24 22 23 eqtrdi ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = ( dom 𝐸 ∪ dom 𝐹 ) )
25 9 pweqd ( 𝜑 → 𝒫 ( Vtx ‘ 𝑈 ) = 𝒫 𝑉 )
26 25 difeq1d ( 𝜑 → ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) = ( 𝒫 𝑉 ∖ { ∅ } ) )
27 10 24 26 feq123d ( 𝜑 → ( ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ↔ ( 𝐸𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) )
28 21 27 mpbird ( 𝜑 → ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) )
29 eqid ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 )
30 eqid ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 )
31 29 30 isuhgr ( 𝑈𝑊 → ( 𝑈 ∈ UHGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ) )
32 8 31 syl ( 𝜑 → ( 𝑈 ∈ UHGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ) )
33 28 32 mpbird ( 𝜑𝑈 ∈ UHGraph )