| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrun.g | ⊢ ( 𝜑  →  𝐺  ∈  UHGraph ) | 
						
							| 2 |  | uhgrun.h | ⊢ ( 𝜑  →  𝐻  ∈  UHGraph ) | 
						
							| 3 |  | uhgrun.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 4 |  | uhgrun.f | ⊢ 𝐹  =  ( iEdg ‘ 𝐻 ) | 
						
							| 5 |  | uhgrun.vg | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 6 |  | uhgrun.vh | ⊢ ( 𝜑  →  ( Vtx ‘ 𝐻 )  =  𝑉 ) | 
						
							| 7 |  | uhgrun.i | ⊢ ( 𝜑  →  ( dom  𝐸  ∩  dom  𝐹 )  =  ∅ ) | 
						
							| 8 |  | opex | ⊢ 〈 𝑉 ,  ( 𝐸  ∪  𝐹 ) 〉  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  〈 𝑉 ,  ( 𝐸  ∪  𝐹 ) 〉  ∈  V ) | 
						
							| 10 | 5 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 11 | 3 | fvexi | ⊢ 𝐸  ∈  V | 
						
							| 12 | 4 | fvexi | ⊢ 𝐹  ∈  V | 
						
							| 13 | 11 12 | unex | ⊢ ( 𝐸  ∪  𝐹 )  ∈  V | 
						
							| 14 | 10 13 | pm3.2i | ⊢ ( 𝑉  ∈  V  ∧  ( 𝐸  ∪  𝐹 )  ∈  V ) | 
						
							| 15 |  | opvtxfv | ⊢ ( ( 𝑉  ∈  V  ∧  ( 𝐸  ∪  𝐹 )  ∈  V )  →  ( Vtx ‘ 〈 𝑉 ,  ( 𝐸  ∪  𝐹 ) 〉 )  =  𝑉 ) | 
						
							| 16 | 14 15 | mp1i | ⊢ ( 𝜑  →  ( Vtx ‘ 〈 𝑉 ,  ( 𝐸  ∪  𝐹 ) 〉 )  =  𝑉 ) | 
						
							| 17 |  | opiedgfv | ⊢ ( ( 𝑉  ∈  V  ∧  ( 𝐸  ∪  𝐹 )  ∈  V )  →  ( iEdg ‘ 〈 𝑉 ,  ( 𝐸  ∪  𝐹 ) 〉 )  =  ( 𝐸  ∪  𝐹 ) ) | 
						
							| 18 | 14 17 | mp1i | ⊢ ( 𝜑  →  ( iEdg ‘ 〈 𝑉 ,  ( 𝐸  ∪  𝐹 ) 〉 )  =  ( 𝐸  ∪  𝐹 ) ) | 
						
							| 19 | 1 2 3 4 5 6 7 9 16 18 | uhgrun | ⊢ ( 𝜑  →  〈 𝑉 ,  ( 𝐸  ∪  𝐹 ) 〉  ∈  UHGraph ) |