| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							vtxdusgradjvtx.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							vtxdusgradjvtx.e | 
							⊢ 𝐸  =  ( Edg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							vtxduhgr0edgnel | 
							⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑣  ∈  𝑉 )  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  ↔  ¬  ∃ 𝑒  ∈  𝐸 𝑣  ∈  𝑒 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ralnex | 
							⊢ ( ∀ 𝑒  ∈  𝐸 ¬  𝑣  ∈  𝑒  ↔  ¬  ∃ 𝑒  ∈  𝐸 𝑣  ∈  𝑒 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							bitr4di | 
							⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑣  ∈  𝑉 )  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  ↔  ∀ 𝑒  ∈  𝐸 ¬  𝑣  ∈  𝑒 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ralbidva | 
							⊢ ( 𝐺  ∈  UHGraph  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  ↔  ∀ 𝑣  ∈  𝑉 ∀ 𝑒  ∈  𝐸 ¬  𝑣  ∈  𝑒 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ralcom | 
							⊢ ( ∀ 𝑣  ∈  𝑉 ∀ 𝑒  ∈  𝐸 ¬  𝑣  ∈  𝑒  ↔  ∀ 𝑒  ∈  𝐸 ∀ 𝑣  ∈  𝑉 ¬  𝑣  ∈  𝑒 )  | 
						
						
							| 9 | 
							
								
							 | 
							ralnex2 | 
							⊢ ( ∀ 𝑒  ∈  𝐸 ∀ 𝑣  ∈  𝑉 ¬  𝑣  ∈  𝑒  ↔  ¬  ∃ 𝑒  ∈  𝐸 ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							bitri | 
							⊢ ( ∀ 𝑣  ∈  𝑉 ∀ 𝑒  ∈  𝐸 ¬  𝑣  ∈  𝑒  ↔  ¬  ∃ 𝑒  ∈  𝐸 ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑒  ∈  𝐸 )  →  𝑒  ∈  𝐸 )  | 
						
						
							| 12 | 
							
								2
							 | 
							eleq2i | 
							⊢ ( 𝑒  ∈  𝐸  ↔  𝑒  ∈  ( Edg ‘ 𝐺 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							uhgredgn0 | 
							⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑒  ∈  ( Edg ‘ 𝐺 ) )  →  𝑒  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sylan2b | 
							⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑒  ∈  𝐸 )  →  𝑒  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eldifsn | 
							⊢ ( 𝑒  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ↔  ( 𝑒  ∈  𝒫  ( Vtx ‘ 𝐺 )  ∧  𝑒  ≠  ∅ ) )  | 
						
						
							| 16 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑒  ∈  𝒫  ( Vtx ‘ 𝐺 )  →  𝑒  ⊆  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 17 | 
							
								1
							 | 
							sseq2i | 
							⊢ ( 𝑒  ⊆  𝑉  ↔  𝑒  ⊆  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							ssn0rex | 
							⊢ ( ( 𝑒  ⊆  𝑉  ∧  𝑒  ≠  ∅ )  →  ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 )  | 
						
						
							| 19 | 
							
								18
							 | 
							ex | 
							⊢ ( 𝑒  ⊆  𝑉  →  ( 𝑒  ≠  ∅  →  ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							sylbir | 
							⊢ ( 𝑒  ⊆  ( Vtx ‘ 𝐺 )  →  ( 𝑒  ≠  ∅  →  ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 ) )  | 
						
						
							| 21 | 
							
								16 20
							 | 
							syl | 
							⊢ ( 𝑒  ∈  𝒫  ( Vtx ‘ 𝐺 )  →  ( 𝑒  ≠  ∅  →  ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							imp | 
							⊢ ( ( 𝑒  ∈  𝒫  ( Vtx ‘ 𝐺 )  ∧  𝑒  ≠  ∅ )  →  ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 )  | 
						
						
							| 23 | 
							
								15 22
							 | 
							sylbi | 
							⊢ ( 𝑒  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  →  ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 )  | 
						
						
							| 24 | 
							
								14 23
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑒  ∈  𝐸 )  →  ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 )  | 
						
						
							| 25 | 
							
								11 24
							 | 
							jca | 
							⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑒  ∈  𝐸 )  →  ( 𝑒  ∈  𝐸  ∧  ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							ex | 
							⊢ ( 𝐺  ∈  UHGraph  →  ( 𝑒  ∈  𝐸  →  ( 𝑒  ∈  𝐸  ∧  ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							eximdv | 
							⊢ ( 𝐺  ∈  UHGraph  →  ( ∃ 𝑒 𝑒  ∈  𝐸  →  ∃ 𝑒 ( 𝑒  ∈  𝐸  ∧  ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							n0 | 
							⊢ ( 𝐸  ≠  ∅  ↔  ∃ 𝑒 𝑒  ∈  𝐸 )  | 
						
						
							| 29 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑒  ∈  𝐸 ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒  ↔  ∃ 𝑒 ( 𝑒  ∈  𝐸  ∧  ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 ) )  | 
						
						
							| 30 | 
							
								27 28 29
							 | 
							3imtr4g | 
							⊢ ( 𝐺  ∈  UHGraph  →  ( 𝐸  ≠  ∅  →  ∃ 𝑒  ∈  𝐸 ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							con3d | 
							⊢ ( 𝐺  ∈  UHGraph  →  ( ¬  ∃ 𝑒  ∈  𝐸 ∃ 𝑣  ∈  𝑉 𝑣  ∈  𝑒  →  ¬  𝐸  ≠  ∅ ) )  | 
						
						
							| 32 | 
							
								10 31
							 | 
							biimtrid | 
							⊢ ( 𝐺  ∈  UHGraph  →  ( ∀ 𝑣  ∈  𝑉 ∀ 𝑒  ∈  𝐸 ¬  𝑣  ∈  𝑒  →  ¬  𝐸  ≠  ∅ ) )  | 
						
						
							| 33 | 
							
								
							 | 
							nne | 
							⊢ ( ¬  𝐸  ≠  ∅  ↔  𝐸  =  ∅ )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							imbitrdi | 
							⊢ ( 𝐺  ∈  UHGraph  →  ( ∀ 𝑣  ∈  𝑉 ∀ 𝑒  ∈  𝐸 ¬  𝑣  ∈  𝑒  →  𝐸  =  ∅ ) )  | 
						
						
							| 35 | 
							
								7 34
							 | 
							sylbid | 
							⊢ ( 𝐺  ∈  UHGraph  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  →  𝐸  =  ∅ ) )  |