Metamath Proof Explorer


Theorem uhgrvd00

Description: If every vertex in a hypergraph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018) (Revised by AV, 24-Dec-2020)

Ref Expression
Hypotheses vtxdusgradjvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
vtxdusgradjvtx.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion uhgrvd00 ( 𝐺 ∈ UHGraph → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 → 𝐸 = ∅ ) )

Proof

Step Hyp Ref Expression
1 vtxdusgradjvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
2 vtxdusgradjvtx.e 𝐸 = ( Edg ‘ 𝐺 )
3 eqid ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 )
4 1 2 3 vtxduhgr0edgnel ( ( 𝐺 ∈ UHGraph ∧ 𝑣𝑉 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ↔ ¬ ∃ 𝑒𝐸 𝑣𝑒 ) )
5 ralnex ( ∀ 𝑒𝐸 ¬ 𝑣𝑒 ↔ ¬ ∃ 𝑒𝐸 𝑣𝑒 )
6 4 5 bitr4di ( ( 𝐺 ∈ UHGraph ∧ 𝑣𝑉 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ↔ ∀ 𝑒𝐸 ¬ 𝑣𝑒 ) )
7 6 ralbidva ( 𝐺 ∈ UHGraph → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ↔ ∀ 𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ) )
8 ralcom ( ∀ 𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ↔ ∀ 𝑒𝐸𝑣𝑉 ¬ 𝑣𝑒 )
9 ralnex2 ( ∀ 𝑒𝐸𝑣𝑉 ¬ 𝑣𝑒 ↔ ¬ ∃ 𝑒𝐸𝑣𝑉 𝑣𝑒 )
10 8 9 bitri ( ∀ 𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 ↔ ¬ ∃ 𝑒𝐸𝑣𝑉 𝑣𝑒 )
11 simpr ( ( 𝐺 ∈ UHGraph ∧ 𝑒𝐸 ) → 𝑒𝐸 )
12 2 eleq2i ( 𝑒𝐸𝑒 ∈ ( Edg ‘ 𝐺 ) )
13 uhgredgn0 ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) )
14 12 13 sylan2b ( ( 𝐺 ∈ UHGraph ∧ 𝑒𝐸 ) → 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) )
15 eldifsn ( 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ) )
16 elpwi ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝑒 ⊆ ( Vtx ‘ 𝐺 ) )
17 1 sseq2i ( 𝑒𝑉𝑒 ⊆ ( Vtx ‘ 𝐺 ) )
18 ssn0rex ( ( 𝑒𝑉𝑒 ≠ ∅ ) → ∃ 𝑣𝑉 𝑣𝑒 )
19 18 ex ( 𝑒𝑉 → ( 𝑒 ≠ ∅ → ∃ 𝑣𝑉 𝑣𝑒 ) )
20 17 19 sylbir ( 𝑒 ⊆ ( Vtx ‘ 𝐺 ) → ( 𝑒 ≠ ∅ → ∃ 𝑣𝑉 𝑣𝑒 ) )
21 16 20 syl ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( 𝑒 ≠ ∅ → ∃ 𝑣𝑉 𝑣𝑒 ) )
22 21 imp ( ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ) → ∃ 𝑣𝑉 𝑣𝑒 )
23 15 22 sylbi ( 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ∃ 𝑣𝑉 𝑣𝑒 )
24 14 23 syl ( ( 𝐺 ∈ UHGraph ∧ 𝑒𝐸 ) → ∃ 𝑣𝑉 𝑣𝑒 )
25 11 24 jca ( ( 𝐺 ∈ UHGraph ∧ 𝑒𝐸 ) → ( 𝑒𝐸 ∧ ∃ 𝑣𝑉 𝑣𝑒 ) )
26 25 ex ( 𝐺 ∈ UHGraph → ( 𝑒𝐸 → ( 𝑒𝐸 ∧ ∃ 𝑣𝑉 𝑣𝑒 ) ) )
27 26 eximdv ( 𝐺 ∈ UHGraph → ( ∃ 𝑒 𝑒𝐸 → ∃ 𝑒 ( 𝑒𝐸 ∧ ∃ 𝑣𝑉 𝑣𝑒 ) ) )
28 n0 ( 𝐸 ≠ ∅ ↔ ∃ 𝑒 𝑒𝐸 )
29 df-rex ( ∃ 𝑒𝐸𝑣𝑉 𝑣𝑒 ↔ ∃ 𝑒 ( 𝑒𝐸 ∧ ∃ 𝑣𝑉 𝑣𝑒 ) )
30 27 28 29 3imtr4g ( 𝐺 ∈ UHGraph → ( 𝐸 ≠ ∅ → ∃ 𝑒𝐸𝑣𝑉 𝑣𝑒 ) )
31 30 con3d ( 𝐺 ∈ UHGraph → ( ¬ ∃ 𝑒𝐸𝑣𝑉 𝑣𝑒 → ¬ 𝐸 ≠ ∅ ) )
32 10 31 syl5bi ( 𝐺 ∈ UHGraph → ( ∀ 𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒 → ¬ 𝐸 ≠ ∅ ) )
33 nne ( ¬ 𝐸 ≠ ∅ ↔ 𝐸 = ∅ )
34 32 33 syl6ib ( 𝐺 ∈ UHGraph → ( ∀ 𝑣𝑉𝑒𝐸 ¬ 𝑣𝑒𝐸 = ∅ ) )
35 7 34 sylbid ( 𝐺 ∈ UHGraph → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 → 𝐸 = ∅ ) )