Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdusgradjvtx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
vtxdusgradjvtx.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
4 |
1 2 3
|
vtxduhgr0edgnel |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑣 ∈ 𝑉 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑣 ∈ 𝑒 ) ) |
5 |
|
ralnex |
⊢ ( ∀ 𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑣 ∈ 𝑒 ) |
6 |
4 5
|
bitr4di |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑣 ∈ 𝑉 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ↔ ∀ 𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ) ) |
7 |
6
|
ralbidva |
⊢ ( 𝐺 ∈ UHGraph → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ↔ ∀ 𝑣 ∈ 𝑉 ∀ 𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ) ) |
8 |
|
ralcom |
⊢ ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ∀ 𝑒 ∈ 𝐸 ∀ 𝑣 ∈ 𝑉 ¬ 𝑣 ∈ 𝑒 ) |
9 |
|
ralnex2 |
⊢ ( ∀ 𝑒 ∈ 𝐸 ∀ 𝑣 ∈ 𝑉 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃ 𝑒 ∈ 𝐸 ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) |
10 |
8 9
|
bitri |
⊢ ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 ↔ ¬ ∃ 𝑒 ∈ 𝐸 ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) |
11 |
|
simpr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝐸 ) |
12 |
2
|
eleq2i |
⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
13 |
|
uhgredgn0 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
14 |
12 13
|
sylan2b |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
15 |
|
eldifsn |
⊢ ( 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ) ) |
16 |
|
elpwi |
⊢ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝑒 ⊆ ( Vtx ‘ 𝐺 ) ) |
17 |
1
|
sseq2i |
⊢ ( 𝑒 ⊆ 𝑉 ↔ 𝑒 ⊆ ( Vtx ‘ 𝐺 ) ) |
18 |
|
ssn0rex |
⊢ ( ( 𝑒 ⊆ 𝑉 ∧ 𝑒 ≠ ∅ ) → ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) |
19 |
18
|
ex |
⊢ ( 𝑒 ⊆ 𝑉 → ( 𝑒 ≠ ∅ → ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) ) |
20 |
17 19
|
sylbir |
⊢ ( 𝑒 ⊆ ( Vtx ‘ 𝐺 ) → ( 𝑒 ≠ ∅ → ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) ) |
21 |
16 20
|
syl |
⊢ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( 𝑒 ≠ ∅ → ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) ) |
22 |
21
|
imp |
⊢ ( ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ) → ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) |
23 |
15 22
|
sylbi |
⊢ ( 𝑒 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) |
24 |
14 23
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) → ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) |
25 |
11 24
|
jca |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) → ( 𝑒 ∈ 𝐸 ∧ ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) ) |
26 |
25
|
ex |
⊢ ( 𝐺 ∈ UHGraph → ( 𝑒 ∈ 𝐸 → ( 𝑒 ∈ 𝐸 ∧ ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) ) ) |
27 |
26
|
eximdv |
⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑒 𝑒 ∈ 𝐸 → ∃ 𝑒 ( 𝑒 ∈ 𝐸 ∧ ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) ) ) |
28 |
|
n0 |
⊢ ( 𝐸 ≠ ∅ ↔ ∃ 𝑒 𝑒 ∈ 𝐸 ) |
29 |
|
df-rex |
⊢ ( ∃ 𝑒 ∈ 𝐸 ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ↔ ∃ 𝑒 ( 𝑒 ∈ 𝐸 ∧ ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) ) |
30 |
27 28 29
|
3imtr4g |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐸 ≠ ∅ → ∃ 𝑒 ∈ 𝐸 ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 ) ) |
31 |
30
|
con3d |
⊢ ( 𝐺 ∈ UHGraph → ( ¬ ∃ 𝑒 ∈ 𝐸 ∃ 𝑣 ∈ 𝑉 𝑣 ∈ 𝑒 → ¬ 𝐸 ≠ ∅ ) ) |
32 |
10 31
|
syl5bi |
⊢ ( 𝐺 ∈ UHGraph → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 → ¬ 𝐸 ≠ ∅ ) ) |
33 |
|
nne |
⊢ ( ¬ 𝐸 ≠ ∅ ↔ 𝐸 = ∅ ) |
34 |
32 33
|
syl6ib |
⊢ ( 𝐺 ∈ UHGraph → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑒 ∈ 𝐸 ¬ 𝑣 ∈ 𝑒 → 𝐸 = ∅ ) ) |
35 |
7 34
|
sylbid |
⊢ ( 𝐺 ∈ UHGraph → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 → 𝐸 = ∅ ) ) |