Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrvtxedgiedgb.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
uhgrvtxedgiedgb.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
4 |
3
|
a1i |
⊢ ( 𝐺 ∈ UHGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
5 |
1
|
rneqi |
⊢ ran 𝐼 = ran ( iEdg ‘ 𝐺 ) |
6 |
4 2 5
|
3eqtr4g |
⊢ ( 𝐺 ∈ UHGraph → 𝐸 = ran 𝐼 ) |
7 |
6
|
rexeqdv |
⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃ 𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒 ) ) |
8 |
1
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
9 |
8
|
funfnd |
⊢ ( 𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼 ) |
10 |
|
eleq2 |
⊢ ( 𝑒 = ( 𝐼 ‘ 𝑖 ) → ( 𝑈 ∈ 𝑒 ↔ 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
11 |
10
|
rexrn |
⊢ ( 𝐼 Fn dom 𝐼 → ( ∃ 𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
12 |
9 11
|
syl |
⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑒 ∈ ran 𝐼 𝑈 ∈ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
13 |
7 12
|
bitrd |
⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
15 |
14
|
bicomd |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |