| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrvtxedgiedgb.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | uhgrvtxedgiedgb.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐺  ∈  UHGraph  →  ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 5 | 1 | rneqi | ⊢ ran  𝐼  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 6 | 4 2 5 | 3eqtr4g | ⊢ ( 𝐺  ∈  UHGraph  →  𝐸  =  ran  𝐼 ) | 
						
							| 7 | 6 | rexeqdv | ⊢ ( 𝐺  ∈  UHGraph  →  ( ∃ 𝑒  ∈  𝐸 𝑈  ∈  𝑒  ↔  ∃ 𝑒  ∈  ran  𝐼 𝑈  ∈  𝑒 ) ) | 
						
							| 8 | 1 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  𝐼 ) | 
						
							| 9 | 8 | funfnd | ⊢ ( 𝐺  ∈  UHGraph  →  𝐼  Fn  dom  𝐼 ) | 
						
							| 10 |  | eleq2 | ⊢ ( 𝑒  =  ( 𝐼 ‘ 𝑖 )  →  ( 𝑈  ∈  𝑒  ↔  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) | 
						
							| 11 | 10 | rexrn | ⊢ ( 𝐼  Fn  dom  𝐼  →  ( ∃ 𝑒  ∈  ran  𝐼 𝑈  ∈  𝑒  ↔  ∃ 𝑖  ∈  dom  𝐼 𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) | 
						
							| 12 | 9 11 | syl | ⊢ ( 𝐺  ∈  UHGraph  →  ( ∃ 𝑒  ∈  ran  𝐼 𝑈  ∈  𝑒  ↔  ∃ 𝑖  ∈  dom  𝐼 𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) | 
						
							| 13 | 7 12 | bitrd | ⊢ ( 𝐺  ∈  UHGraph  →  ( ∃ 𝑒  ∈  𝐸 𝑈  ∈  𝑒  ↔  ∃ 𝑖  ∈  dom  𝐼 𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ∃ 𝑒  ∈  𝐸 𝑈  ∈  𝑒  ↔  ∃ 𝑖  ∈  dom  𝐼 𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) | 
						
							| 15 | 14 | bicomd | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ∃ 𝑖  ∈  dom  𝐼 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ↔  ∃ 𝑒  ∈  𝐸 𝑈  ∈  𝑒 ) ) |