Metamath Proof Explorer


Theorem uhgrvtxedgiedgb

Description: In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020) (Revised by AV, 6-Jul-2022)

Ref Expression
Hypotheses uhgrvtxedgiedgb.i 𝐼 = ( iEdg ‘ 𝐺 )
uhgrvtxedgiedgb.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion uhgrvtxedgiedgb ( ( 𝐺 ∈ UHGraph ∧ 𝑈𝑉 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼𝑖 ) ↔ ∃ 𝑒𝐸 𝑈𝑒 ) )

Proof

Step Hyp Ref Expression
1 uhgrvtxedgiedgb.i 𝐼 = ( iEdg ‘ 𝐺 )
2 uhgrvtxedgiedgb.e 𝐸 = ( Edg ‘ 𝐺 )
3 edgval ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 )
4 3 a1i ( 𝐺 ∈ UHGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) )
5 1 rneqi ran 𝐼 = ran ( iEdg ‘ 𝐺 )
6 4 2 5 3eqtr4g ( 𝐺 ∈ UHGraph → 𝐸 = ran 𝐼 )
7 6 rexeqdv ( 𝐺 ∈ UHGraph → ( ∃ 𝑒𝐸 𝑈𝑒 ↔ ∃ 𝑒 ∈ ran 𝐼 𝑈𝑒 ) )
8 1 uhgrfun ( 𝐺 ∈ UHGraph → Fun 𝐼 )
9 8 funfnd ( 𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼 )
10 eleq2 ( 𝑒 = ( 𝐼𝑖 ) → ( 𝑈𝑒𝑈 ∈ ( 𝐼𝑖 ) ) )
11 10 rexrn ( 𝐼 Fn dom 𝐼 → ( ∃ 𝑒 ∈ ran 𝐼 𝑈𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼𝑖 ) ) )
12 9 11 syl ( 𝐺 ∈ UHGraph → ( ∃ 𝑒 ∈ ran 𝐼 𝑈𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼𝑖 ) ) )
13 7 12 bitrd ( 𝐺 ∈ UHGraph → ( ∃ 𝑒𝐸 𝑈𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼𝑖 ) ) )
14 13 adantr ( ( 𝐺 ∈ UHGraph ∧ 𝑈𝑉 ) → ( ∃ 𝑒𝐸 𝑈𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼𝑖 ) ) )
15 14 bicomd ( ( 𝐺 ∈ UHGraph ∧ 𝑈𝑉 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑈 ∈ ( 𝐼𝑖 ) ↔ ∃ 𝑒𝐸 𝑈𝑒 ) )