Metamath Proof Explorer


Theorem uhgrwkspthlem1

Description: Lemma 1 for uhgrwkspth . (Contributed by AV, 25-Jan-2021)

Ref Expression
Assertion uhgrwkspthlem1 ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 1 ) → Fun 𝐹 )

Proof

Step Hyp Ref Expression
1 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
2 1 wlkf ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) )
3 wrdl1exs1 ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) = 1 ) → ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐹 = ⟨“ 𝑖 ”⟩ )
4 funcnvs1 Fun ⟨“ 𝑖 ”⟩
5 cnveq ( 𝐹 = ⟨“ 𝑖 ”⟩ → 𝐹 = ⟨“ 𝑖 ”⟩ )
6 5 funeqd ( 𝐹 = ⟨“ 𝑖 ”⟩ → ( Fun 𝐹 ↔ Fun ⟨“ 𝑖 ”⟩ ) )
7 4 6 mpbiri ( 𝐹 = ⟨“ 𝑖 ”⟩ → Fun 𝐹 )
8 7 rexlimivw ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐹 = ⟨“ 𝑖 ”⟩ → Fun 𝐹 )
9 3 8 syl ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) = 1 ) → Fun 𝐹 )
10 2 9 sylan ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 1 ) → Fun 𝐹 )