Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
2 |
1
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
3 |
|
wrdl1exs1 |
⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) = 1 ) → ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐹 = 〈“ 𝑖 ”〉 ) |
4 |
|
funcnvs1 |
⊢ Fun ◡ 〈“ 𝑖 ”〉 |
5 |
|
cnveq |
⊢ ( 𝐹 = 〈“ 𝑖 ”〉 → ◡ 𝐹 = ◡ 〈“ 𝑖 ”〉 ) |
6 |
5
|
funeqd |
⊢ ( 𝐹 = 〈“ 𝑖 ”〉 → ( Fun ◡ 𝐹 ↔ Fun ◡ 〈“ 𝑖 ”〉 ) ) |
7 |
4 6
|
mpbiri |
⊢ ( 𝐹 = 〈“ 𝑖 ”〉 → Fun ◡ 𝐹 ) |
8 |
7
|
rexlimivw |
⊢ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐹 = 〈“ 𝑖 ”〉 → Fun ◡ 𝐹 ) |
9 |
3 8
|
syl |
⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) = 1 ) → Fun ◡ 𝐹 ) |
10 |
2 9
|
sylan |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 1 ) → Fun ◡ 𝐹 ) |