Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
1
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
3 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 1 ) ) |
4 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
5 |
4
|
oveq2i |
⊢ ( 0 ... 1 ) = ( 0 ... ( 0 + 1 ) ) |
6 |
|
0z |
⊢ 0 ∈ ℤ |
7 |
|
fzpr |
⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } ) |
8 |
6 7
|
ax-mp |
⊢ ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } |
9 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
10 |
9
|
preq2i |
⊢ { 0 , ( 0 + 1 ) } = { 0 , 1 } |
11 |
5 8 10
|
3eqtri |
⊢ ( 0 ... 1 ) = { 0 , 1 } |
12 |
3 11
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = { 0 , 1 } ) |
13 |
12
|
feq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ↔ 𝑃 : { 0 , 1 } ⟶ ( Vtx ‘ 𝐺 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ↔ 𝑃 : { 0 , 1 } ⟶ ( Vtx ‘ 𝐺 ) ) ) |
15 |
|
simpl |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) → ( 𝑃 ‘ 0 ) = 𝐴 ) |
16 |
|
simpr |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) |
17 |
15 16
|
neeq12d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ 𝐴 ≠ 𝐵 ) ) |
18 |
17
|
bicomd |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
19 |
|
fveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 1 ) ) |
20 |
19
|
neeq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
21 |
18 20
|
sylan9bbr |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
22 |
14 21
|
anbi12d |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ 𝐵 ) ↔ ( 𝑃 : { 0 , 1 } ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
23 |
|
1z |
⊢ 1 ∈ ℤ |
24 |
|
fpr2g |
⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑃 : { 0 , 1 } ⟶ ( Vtx ‘ 𝐺 ) ↔ ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ) ) ) |
25 |
6 23 24
|
mp2an |
⊢ ( 𝑃 : { 0 , 1 } ⟶ ( Vtx ‘ 𝐺 ) ↔ ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ) ) |
26 |
|
funcnvs2 |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) → Fun ◡ 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ”〉 ) |
27 |
26
|
3expa |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) → Fun ◡ 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ”〉 ) |
28 |
27
|
adantl |
⊢ ( ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ∧ ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) → Fun ◡ 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ”〉 ) |
29 |
|
simpl |
⊢ ( ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ∧ ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) → 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ) |
30 |
|
s2prop |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) → 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ”〉 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ) |
31 |
30
|
eqcomd |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) → { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } = 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ”〉 ) |
32 |
31
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) → { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } = 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ”〉 ) |
33 |
32
|
adantl |
⊢ ( ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ∧ ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) → { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } = 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ”〉 ) |
34 |
29 33
|
eqtrd |
⊢ ( ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ∧ ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) → 𝑃 = 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ”〉 ) |
35 |
34
|
cnveqd |
⊢ ( ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ∧ ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) → ◡ 𝑃 = ◡ 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ”〉 ) |
36 |
35
|
funeqd |
⊢ ( ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ∧ ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) → ( Fun ◡ 𝑃 ↔ Fun ◡ 〈“ ( 𝑃 ‘ 0 ) ( 𝑃 ‘ 1 ) ”〉 ) ) |
37 |
28 36
|
mpbird |
⊢ ( ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ∧ ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) → Fun ◡ 𝑃 ) |
38 |
37
|
exp32 |
⊢ ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } → ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) → Fun ◡ 𝑃 ) ) ) |
39 |
38
|
impcom |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) → Fun ◡ 𝑃 ) ) |
40 |
39
|
3impa |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 , 〈 1 , ( 𝑃 ‘ 1 ) 〉 } ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) → Fun ◡ 𝑃 ) ) |
41 |
25 40
|
sylbi |
⊢ ( 𝑃 : { 0 , 1 } ⟶ ( Vtx ‘ 𝐺 ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) → Fun ◡ 𝑃 ) ) |
42 |
41
|
imp |
⊢ ( ( 𝑃 : { 0 , 1 } ⟶ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) → Fun ◡ 𝑃 ) |
43 |
22 42
|
syl6bi |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ 𝐵 ) → Fun ◡ 𝑃 ) ) |
44 |
43
|
expd |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( 𝐴 ≠ 𝐵 → Fun ◡ 𝑃 ) ) ) |
45 |
44
|
com12 |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → ( 𝐴 ≠ 𝐵 → Fun ◡ 𝑃 ) ) ) |
46 |
45
|
expd |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝐹 ) = 1 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) → ( 𝐴 ≠ 𝐵 → Fun ◡ 𝑃 ) ) ) ) |
47 |
46
|
com34 |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝐹 ) = 1 → ( 𝐴 ≠ 𝐵 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) → Fun ◡ 𝑃 ) ) ) ) |
48 |
47
|
impd |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) → Fun ◡ 𝑃 ) ) ) |
49 |
2 48
|
syl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) → Fun ◡ 𝑃 ) ) ) |
50 |
49
|
3imp |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → Fun ◡ 𝑃 ) |