Step |
Hyp |
Ref |
Expression |
1 |
|
ulm0.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
ulm0.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
ulm0.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
4 |
|
ulm0.g |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
5 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
7 |
6 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
8 |
7
|
ne0d |
⊢ ( 𝜑 → 𝑍 ≠ ∅ ) |
9 |
|
ral0 |
⊢ ∀ 𝑧 ∈ ∅ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝑆 = ∅ ) |
11 |
10
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ ∅ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
12 |
9 11
|
mpbiri |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
13 |
12
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
14 |
13
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ∀ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
15 |
|
r19.2z |
⊢ ( ( 𝑍 ≠ ∅ ∧ ∀ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
16 |
8 14 15
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
17 |
16
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
18 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝑀 ∈ ℤ ) |
19 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
20 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑆 = ∅ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
21 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑆 = ∅ ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
22 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝐺 : 𝑆 ⟶ ℂ ) |
23 |
|
0ex |
⊢ ∅ ∈ V |
24 |
10 23
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝑆 ∈ V ) |
25 |
1 18 19 20 21 22 24
|
ulm2 |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
26 |
17 25
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |