| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ulm0.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | ulm0.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | ulm0.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( ℂ  ↑m  𝑆 ) ) | 
						
							| 4 |  | ulm0.g | ⊢ ( 𝜑  →  𝐺 : 𝑆 ⟶ ℂ ) | 
						
							| 5 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 7 | 6 1 | eleqtrrdi | ⊢ ( 𝜑  →  𝑀  ∈  𝑍 ) | 
						
							| 8 | 7 | ne0d | ⊢ ( 𝜑  →  𝑍  ≠  ∅ ) | 
						
							| 9 |  | ral0 | ⊢ ∀ 𝑧  ∈  ∅ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  𝑆  =  ∅ ) | 
						
							| 11 | 10 | raleqdv | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  ( ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥  ↔  ∀ 𝑧  ∈  ∅ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 ) ) | 
						
							| 12 | 9 11 | mpbiri | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 ) | 
						
							| 13 | 12 | ralrimivw | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 ) | 
						
							| 14 | 13 | ralrimivw | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  ∀ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 ) | 
						
							| 15 |  | r19.2z | ⊢ ( ( 𝑍  ≠  ∅  ∧  ∀ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 ) | 
						
							| 16 | 8 14 15 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 ) | 
						
							| 17 | 16 | ralrimivw | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 ) | 
						
							| 18 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  𝑀  ∈  ℤ ) | 
						
							| 19 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  𝐹 : 𝑍 ⟶ ( ℂ  ↑m  𝑆 ) ) | 
						
							| 20 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑆  =  ∅ )  ∧  ( 𝑘  ∈  𝑍  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  =  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) | 
						
							| 21 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑆  =  ∅ )  ∧  𝑧  ∈  𝑆 )  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 22 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  𝐺 : 𝑆 ⟶ ℂ ) | 
						
							| 23 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 24 | 10 23 | eqeltrdi | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  𝑆  ∈  V ) | 
						
							| 25 | 1 18 19 20 21 22 24 | ulm2 | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 ) ) | 
						
							| 26 | 17 25 | mpbird | ⊢ ( ( 𝜑  ∧  𝑆  =  ∅ )  →  𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |