Metamath Proof Explorer


Theorem ulm0

Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses ulm0.z 𝑍 = ( ℤ𝑀 )
ulm0.m ( 𝜑𝑀 ∈ ℤ )
ulm0.f ( 𝜑𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) )
ulm0.g ( 𝜑𝐺 : 𝑆 ⟶ ℂ )
Assertion ulm0 ( ( 𝜑𝑆 = ∅ ) → 𝐹 ( ⇝𝑢𝑆 ) 𝐺 )

Proof

Step Hyp Ref Expression
1 ulm0.z 𝑍 = ( ℤ𝑀 )
2 ulm0.m ( 𝜑𝑀 ∈ ℤ )
3 ulm0.f ( 𝜑𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) )
4 ulm0.g ( 𝜑𝐺 : 𝑆 ⟶ ℂ )
5 uzid ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ𝑀 ) )
6 2 5 syl ( 𝜑𝑀 ∈ ( ℤ𝑀 ) )
7 6 1 eleqtrrdi ( 𝜑𝑀𝑍 )
8 7 ne0d ( 𝜑𝑍 ≠ ∅ )
9 ral0 𝑧 ∈ ∅ ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( 𝐺𝑧 ) ) ) < 𝑥
10 simpr ( ( 𝜑𝑆 = ∅ ) → 𝑆 = ∅ )
11 10 raleqdv ( ( 𝜑𝑆 = ∅ ) → ( ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( 𝐺𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ ∅ ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( 𝐺𝑧 ) ) ) < 𝑥 ) )
12 9 11 mpbiri ( ( 𝜑𝑆 = ∅ ) → ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( 𝐺𝑧 ) ) ) < 𝑥 )
13 12 ralrimivw ( ( 𝜑𝑆 = ∅ ) → ∀ 𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( 𝐺𝑧 ) ) ) < 𝑥 )
14 13 ralrimivw ( ( 𝜑𝑆 = ∅ ) → ∀ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( 𝐺𝑧 ) ) ) < 𝑥 )
15 r19.2z ( ( 𝑍 ≠ ∅ ∧ ∀ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( 𝐺𝑧 ) ) ) < 𝑥 ) → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( 𝐺𝑧 ) ) ) < 𝑥 )
16 8 14 15 syl2an2r ( ( 𝜑𝑆 = ∅ ) → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( 𝐺𝑧 ) ) ) < 𝑥 )
17 16 ralrimivw ( ( 𝜑𝑆 = ∅ ) → ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( 𝐺𝑧 ) ) ) < 𝑥 )
18 2 adantr ( ( 𝜑𝑆 = ∅ ) → 𝑀 ∈ ℤ )
19 3 adantr ( ( 𝜑𝑆 = ∅ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) )
20 eqidd ( ( ( 𝜑𝑆 = ∅ ) ∧ ( 𝑘𝑍𝑧𝑆 ) ) → ( ( 𝐹𝑘 ) ‘ 𝑧 ) = ( ( 𝐹𝑘 ) ‘ 𝑧 ) )
21 eqidd ( ( ( 𝜑𝑆 = ∅ ) ∧ 𝑧𝑆 ) → ( 𝐺𝑧 ) = ( 𝐺𝑧 ) )
22 4 adantr ( ( 𝜑𝑆 = ∅ ) → 𝐺 : 𝑆 ⟶ ℂ )
23 0ex ∅ ∈ V
24 10 23 eqeltrdi ( ( 𝜑𝑆 = ∅ ) → 𝑆 ∈ V )
25 1 18 19 20 21 22 24 ulm2 ( ( 𝜑𝑆 = ∅ ) → ( 𝐹 ( ⇝𝑢𝑆 ) 𝐺 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( ( ( 𝐹𝑘 ) ‘ 𝑧 ) − ( 𝐺𝑧 ) ) ) < 𝑥 ) )
26 17 25 mpbird ( ( 𝜑𝑆 = ∅ ) → 𝐹 ( ⇝𝑢𝑆 ) 𝐺 )