Step |
Hyp |
Ref |
Expression |
1 |
|
ulm2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
ulm2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
ulm2.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
4 |
|
ulm2.b |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = 𝐵 ) |
5 |
|
ulm2.a |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = 𝐴 ) |
6 |
|
ulm2.g |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
7 |
|
ulm2.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
8 |
|
ulmval |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
10 |
|
3anan12 |
⊢ ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝐺 : 𝑆 ⟶ ℂ ∧ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
11 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝑍 ) |
12 |
|
fdm |
⊢ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) → dom 𝐹 = ( ℤ≥ ‘ 𝑛 ) ) |
13 |
11 12
|
sylan9req |
⊢ ( ( 𝜑 ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝑍 = ( ℤ≥ ‘ 𝑛 ) ) |
14 |
1 13
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑛 ) ) |
15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝑀 ∈ ℤ ) |
16 |
|
uz11 |
⊢ ( 𝑀 ∈ ℤ → ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑛 ) ↔ 𝑀 = 𝑛 ) ) |
17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑛 ) ↔ 𝑀 = 𝑛 ) ) |
18 |
14 17
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝑀 = 𝑛 ) |
19 |
18
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) → 𝑛 = 𝑀 ) |
20 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑀 ) ) |
21 |
20 1
|
eqtr4di |
⊢ ( 𝑛 = 𝑀 → ( ℤ≥ ‘ 𝑛 ) = 𝑍 ) |
22 |
21
|
feq2d |
⊢ ( 𝑛 = 𝑀 → ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ↔ 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) ) |
23 |
22
|
biimparc |
⊢ ( ( 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑛 = 𝑀 ) → 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) |
24 |
3 23
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) |
25 |
19 24
|
impbida |
⊢ ( 𝜑 → ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ↔ 𝑛 = 𝑀 ) ) |
26 |
25
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
27 |
6
|
biantrurd |
⊢ ( 𝜑 → ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝐺 : 𝑆 ⟶ ℂ ∧ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) ) |
28 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝜑 ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → 𝑛 = 𝑀 ) |
30 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
31 |
2 30
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
32 |
31 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → 𝑀 ∈ 𝑍 ) |
34 |
29 33
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → 𝑛 ∈ 𝑍 ) |
35 |
1
|
uztrn2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑗 ∈ 𝑍 ) |
36 |
34 35
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑗 ∈ 𝑍 ) |
37 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
38 |
36 37
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
39 |
38
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑘 ∈ 𝑍 ) |
40 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) |
41 |
28 39 40 4
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = 𝐵 ) |
42 |
28 5
|
sylancom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = 𝐴 ) |
43 |
41 42
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) = ( 𝐵 − 𝐴 ) ) |
44 |
43
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
45 |
44
|
breq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
46 |
45
|
ralbidva |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
47 |
46
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑛 = 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
48 |
47
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
49 |
48
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
50 |
49
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
51 |
26 27 50
|
3bitr3d |
⊢ ( 𝜑 → ( ( 𝐺 : 𝑆 ⟶ ℂ ∧ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ↔ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
52 |
10 51
|
syl5bb |
⊢ ( 𝜑 → ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
53 |
52
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
54 |
21
|
rexeqdv |
⊢ ( 𝑛 = 𝑀 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
55 |
54
|
ralbidv |
⊢ ( 𝑛 = 𝑀 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
56 |
55
|
ceqsrexv |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
57 |
2 56
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℤ ( 𝑛 = 𝑀 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
58 |
9 53 57
|
3bitrd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |