Step |
Hyp |
Ref |
Expression |
1 |
|
ulmcau.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
ulmcau.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
ulmcau.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
4 |
|
ulmcau.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
5 |
|
eldmg |
⊢ ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∃ 𝑔 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ) |
6 |
5
|
ibi |
⊢ ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ∃ 𝑔 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) |
7 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
8 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
9 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
10 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑔 ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) |
11 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) |
12 |
|
rphalfcl |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
14 |
1 7 8 9 10 11 13
|
ulmi |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) |
15 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
16 |
15 1
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
17 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
18 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
20 |
19
|
fveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) |
21 |
20
|
fvoveq1d |
⊢ ( 𝑘 = 𝑗 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) ) |
22 |
21
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
23 |
22
|
ralbidv |
⊢ ( 𝑘 = 𝑗 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
24 |
23
|
rspcv |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
25 |
16 17 18 24
|
4syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
26 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ 𝑆 ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ↔ ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
27 |
8
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
29 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
30 |
28 29
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
31 |
30
|
ffvelrnda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ) |
32 |
|
ulmcl |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 → 𝑔 : 𝑆 ⟶ ℂ ) |
33 |
32
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑔 : 𝑆 ⟶ ℂ ) |
34 |
33
|
ffvelrnda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑔 ‘ 𝑧 ) ∈ ℂ ) |
35 |
31 34
|
abssubd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ) |
36 |
35
|
breq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
37 |
36
|
biimpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
38 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
39 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
40 |
8 38 39
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
41 |
40
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
42 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
43 |
41 42
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
44 |
43
|
ffvelrnda |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
45 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
46 |
45
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ℝ ) |
47 |
|
abs3lem |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ) ∧ ( ( 𝑔 ‘ 𝑧 ) ∈ ℂ ∧ 𝑥 ∈ ℝ ) ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
48 |
44 31 34 46 47
|
syl22anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
49 |
37 48
|
sylan2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
50 |
49
|
ancomsd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
51 |
50
|
ralimdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
52 |
26 51
|
syl5bir |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
53 |
52
|
expdimp |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
54 |
53
|
an32s |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
55 |
54
|
ralimdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
56 |
55
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
57 |
56
|
com23 |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
58 |
25 57
|
mpdd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
59 |
58
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
60 |
14 59
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) |
61 |
60
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) |
62 |
61
|
ex |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
63 |
62
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑔 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
64 |
6 63
|
syl5 |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
65 |
|
ulmrel |
⊢ Rel ( ⇝𝑢 ‘ 𝑆 ) |
66 |
1 2 3 4
|
ulmcaulem |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
67 |
66
|
biimpa |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) |
68 |
|
rphalfcl |
⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ ) |
69 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
70 |
69
|
ralbidv |
⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
71 |
70
|
2ralbidv |
⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
72 |
71
|
rexbidv |
⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
73 |
|
ralcom |
⊢ ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ) |
74 |
|
fveq2 |
⊢ ( 𝑞 = 𝑘 → ( ℤ≥ ‘ 𝑞 ) = ( ℤ≥ ‘ 𝑘 ) ) |
75 |
|
fveq2 |
⊢ ( 𝑤 = 𝑧 → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) ) |
76 |
|
fveq2 |
⊢ ( 𝑤 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
77 |
75 76
|
oveq12d |
⊢ ( 𝑤 = 𝑧 → ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) = ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) |
78 |
77
|
fveq2d |
⊢ ( 𝑤 = 𝑧 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
79 |
78
|
breq1d |
⊢ ( 𝑤 = 𝑧 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
80 |
79
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) |
81 |
|
fveq2 |
⊢ ( 𝑞 = 𝑘 → ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑘 ) ) |
82 |
81
|
fveq1d |
⊢ ( 𝑞 = 𝑘 → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
83 |
82
|
fvoveq1d |
⊢ ( 𝑞 = 𝑘 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
84 |
83
|
breq1d |
⊢ ( 𝑞 = 𝑘 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
85 |
84
|
ralbidv |
⊢ ( 𝑞 = 𝑘 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
86 |
80 85
|
syl5bb |
⊢ ( 𝑞 = 𝑘 → ( ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
87 |
74 86
|
raleqbidv |
⊢ ( 𝑞 = 𝑘 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
88 |
73 87
|
syl5bb |
⊢ ( 𝑞 = 𝑘 → ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
89 |
88
|
cbvralvw |
⊢ ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) |
90 |
|
fveq2 |
⊢ ( 𝑝 = 𝑗 → ( ℤ≥ ‘ 𝑝 ) = ( ℤ≥ ‘ 𝑗 ) ) |
91 |
90
|
raleqdv |
⊢ ( 𝑝 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
92 |
89 91
|
syl5bb |
⊢ ( 𝑝 = 𝑗 → ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
93 |
92
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) |
94 |
72 93
|
bitr4di |
⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ) ) |
95 |
94
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ) |
96 |
67 68 95
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ) |
97 |
1
|
uztrn2 |
⊢ ( ( 𝑝 ∈ 𝑍 ∧ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ) → 𝑞 ∈ 𝑍 ) |
98 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑞 ) = ( ℤ≥ ‘ 𝑞 ) |
99 |
|
eluzelz |
⊢ ( 𝑞 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑞 ∈ ℤ ) |
100 |
99 1
|
eleq2s |
⊢ ( 𝑞 ∈ 𝑍 → 𝑞 ∈ ℤ ) |
101 |
100
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑞 ∈ ℤ ) |
102 |
68
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
103 |
102
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
104 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑞 ∈ 𝑍 ) |
105 |
1
|
uztrn2 |
⊢ ( ( 𝑞 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝑚 ∈ 𝑍 ) |
106 |
104 105
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝑚 ∈ 𝑍 ) |
107 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
108 |
107
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
109 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) |
110 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ∈ V |
111 |
108 109 110
|
fvmpt |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
112 |
106 111
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
113 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
114 |
113
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) ) |
115 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) |
116 |
114 115
|
syl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) |
117 |
116
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ∈ ℂ ) |
118 |
117
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ∈ ℂ ) |
119 |
118
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) : 𝑍 ⟶ ℂ ) |
120 |
119
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑞 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) ∈ ℂ ) |
121 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
122 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
123 |
121 122
|
oveq12d |
⊢ ( 𝑧 = 𝑦 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) |
124 |
123
|
fveq2d |
⊢ ( 𝑧 = 𝑦 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) ) |
125 |
124
|
breq1d |
⊢ ( 𝑧 = 𝑦 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
126 |
125
|
rspcv |
⊢ ( 𝑦 ∈ 𝑆 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
127 |
126
|
ralimdv |
⊢ ( 𝑦 ∈ 𝑆 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
128 |
127
|
reximdv |
⊢ ( 𝑦 ∈ 𝑆 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
129 |
128
|
ralimdv |
⊢ ( 𝑦 ∈ 𝑆 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
130 |
129
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) |
131 |
130
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) |
132 |
|
fveq2 |
⊢ ( 𝑞 = 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) = ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) ) |
133 |
132
|
fvoveq1d |
⊢ ( 𝑞 = 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) = ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) ) |
134 |
133
|
breq1d |
⊢ ( 𝑞 = 𝑘 → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ) ) |
135 |
134
|
cbvralvw |
⊢ ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ) |
136 |
|
fveq2 |
⊢ ( 𝑝 = 𝑗 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) = ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) |
137 |
136
|
oveq2d |
⊢ ( 𝑝 = 𝑗 → ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) = ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) |
138 |
137
|
fveq2d |
⊢ ( 𝑝 = 𝑗 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) = ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ) |
139 |
138
|
breq1d |
⊢ ( 𝑝 = 𝑗 → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ) ) |
140 |
90 139
|
raleqbidv |
⊢ ( 𝑝 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ) ) |
141 |
135 140
|
syl5bb |
⊢ ( 𝑝 = 𝑗 → ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ) ) |
142 |
141
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ) |
143 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
144 |
143
|
fveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
145 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) |
146 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ∈ V |
147 |
144 145 146
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
148 |
38 147
|
syl |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
149 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) |
150 |
149
|
fveq1d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
151 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ∈ V |
152 |
150 145 151
|
fvmpt |
⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
153 |
152
|
adantr |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
154 |
148 153
|
oveq12d |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) |
155 |
154
|
fveq2d |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) ) |
156 |
155
|
breq1d |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ) ) |
157 |
156
|
ralbidva |
⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ) ) |
158 |
157
|
rexbiia |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ) |
159 |
142 158
|
bitri |
⊢ ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ) |
160 |
|
breq2 |
⊢ ( 𝑟 = 𝑥 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
161 |
160
|
ralbidv |
⊢ ( 𝑟 = 𝑥 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
162 |
161
|
rexbidv |
⊢ ( 𝑟 = 𝑥 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
163 |
159 162
|
syl5bb |
⊢ ( 𝑟 = 𝑥 → ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
164 |
163
|
cbvralvw |
⊢ ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) |
165 |
131 164
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ) |
166 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
167 |
166
|
mptex |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ V |
168 |
167
|
a1i |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ V ) |
169 |
1 120 165 168
|
caucvg |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) |
170 |
169
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) |
171 |
170
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) |
172 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) |
173 |
172
|
mpteq2dv |
⊢ ( 𝑦 = 𝑤 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) |
174 |
173
|
eleq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ↔ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ∈ dom ⇝ ) ) |
175 |
174
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ∧ 𝑤 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ∈ dom ⇝ ) |
176 |
171 175
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ∈ dom ⇝ ) |
177 |
|
climdm |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ∈ dom ⇝ ↔ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
178 |
176 177
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
179 |
98 101 103 112 178
|
climi2 |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) |
180 |
98
|
r19.29uz |
⊢ ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) ) |
181 |
98
|
r19.2uz |
⊢ ( ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) ) |
182 |
180 181
|
syl |
⊢ ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) ) |
183 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
184 |
183
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑞 ) ∈ ( ℂ ↑m 𝑆 ) ) |
185 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑞 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑞 ) : 𝑆 ⟶ ℂ ) |
186 |
184 185
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑞 ) : 𝑆 ⟶ ℂ ) |
187 |
186
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ∈ ℂ ) |
188 |
187
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ∈ ℂ ) |
189 |
|
climcl |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ ℂ ) |
190 |
178 189
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ ℂ ) |
191 |
190
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ ℂ ) |
192 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
193 |
192 106
|
ffvelrnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ( ℂ ↑m 𝑆 ) ) |
194 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑚 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑚 ) : 𝑆 ⟶ ℂ ) |
195 |
193 194
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑚 ) : 𝑆 ⟶ ℂ ) |
196 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝑤 ∈ 𝑆 ) |
197 |
195 196
|
ffvelrnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ∈ ℂ ) |
198 |
|
rpre |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) |
199 |
198
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝑟 ∈ ℝ ) |
200 |
|
abs3lem |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ∈ ℂ ∧ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ ℂ ) ∧ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ∈ ℂ ∧ 𝑟 ∈ ℝ ) ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
201 |
188 191 197 199 200
|
syl22anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
202 |
201
|
rexlimdva |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
203 |
182 202
|
syl5 |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
204 |
179 203
|
mpan2d |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
205 |
204
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) → ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
206 |
97 205
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑝 ∈ 𝑍 ∧ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ) ) → ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
207 |
206
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑍 ) ∧ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ) → ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
208 |
207
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑍 ) → ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
209 |
208
|
reximdva |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
210 |
96 209
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) |
211 |
210
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) |
212 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝑀 ∈ ℤ ) |
213 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ ( 𝑞 ∈ 𝑍 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) |
214 |
173
|
fveq2d |
⊢ ( 𝑦 = 𝑤 → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) = ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
215 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) |
216 |
|
fvex |
⊢ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ V |
217 |
214 215 216
|
fvmpt |
⊢ ( 𝑤 ∈ 𝑆 → ( ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ‘ 𝑤 ) = ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
218 |
217
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ‘ 𝑤 ) = ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
219 |
|
climdm |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ↔ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) |
220 |
169 219
|
sylib |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) |
221 |
|
climcl |
⊢ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ∈ ℂ ) |
222 |
220 221
|
syl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ∈ ℂ ) |
223 |
222
|
fmpttd |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) : 𝑆 ⟶ ℂ ) |
224 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝑆 ∈ 𝑉 ) |
225 |
1 212 113 213 218 223 224
|
ulm2 |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
226 |
211 225
|
mpbird |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ) |
227 |
|
releldm |
⊢ ( ( Rel ( ⇝𝑢 ‘ 𝑆 ) ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ) → 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |
228 |
65 226 227
|
sylancr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |
229 |
228
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) ) |
230 |
64 229
|
impbid |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |