Database
BASIC REAL AND COMPLEX FUNCTIONS
Sequences and series
Uniform convergence
ulmcau2
Metamath Proof Explorer
Description: A sequence of functions converges uniformly iff it is uniformly Cauchy,
which is to say that for every 0 < x there is a j such that for
all j <_ k , m the functions F ( k ) and F ( m ) are
uniformly within x of each other on S . (Contributed by Mario
Carneiro , 1-Mar-2015)
Ref
Expression
Hypotheses
ulmcau.z
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 )
ulmcau.m
⊢ ( 𝜑 → 𝑀 ∈ ℤ )
ulmcau.s
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 )
ulmcau.f
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) )
Assertion
ulmcau2
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) )
Proof
Step
Hyp
Ref
Expression
1
ulmcau.z
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 )
2
ulmcau.m
⊢ ( 𝜑 → 𝑀 ∈ ℤ )
3
ulmcau.s
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 )
4
ulmcau.f
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) )
5
1 2 3 4
ulmcau
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) )
6
1 2 3 4
ulmcaulem
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) )
7
5 6
bitrd
⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) )