| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ulmscl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺  →  𝑆  ∈  V ) | 
						
							| 2 |  | ulmval | ⊢ ( 𝑆  ∈  V  →  ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺  ↔  ∃ 𝑛  ∈  ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ  ↑m  𝑆 )  ∧  𝐺 : 𝑆 ⟶ ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺  →  ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺  ↔  ∃ 𝑛  ∈  ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ  ↑m  𝑆 )  ∧  𝐺 : 𝑆 ⟶ ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 ) ) ) | 
						
							| 4 | 3 | ibi | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺  →  ∃ 𝑛  ∈  ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ  ↑m  𝑆 )  ∧  𝐺 : 𝑆 ⟶ ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 ) ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ  ↑m  𝑆 )  ∧  𝐺 : 𝑆 ⟶ ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 )  →  𝐺 : 𝑆 ⟶ ℂ ) | 
						
							| 6 | 5 | rexlimivw | ⊢ ( ∃ 𝑛  ∈  ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ  ↑m  𝑆 )  ∧  𝐺 : 𝑆 ⟶ ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 )  →  𝐺 : 𝑆 ⟶ ℂ ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺  →  𝐺 : 𝑆 ⟶ ℂ ) |