| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ulmclm.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | ulmclm.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | ulmclm.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( ℂ  ↑m  𝑆 ) ) | 
						
							| 4 |  | ulmclm.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑆 ) | 
						
							| 5 |  | ulmclm.h | ⊢ ( 𝜑  →  𝐻  ∈  𝑊 ) | 
						
							| 6 |  | ulmclm.e | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 )  =  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 7 |  | ulmclm.u | ⊢ ( 𝜑  →  𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  =  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑧  =  𝐴  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐴 ) ) | 
						
							| 10 | 8 9 | oveq12d | ⊢ ( 𝑧  =  𝐴  →  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) )  =  ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 )  −  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑧  =  𝐴  →  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  =  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 )  −  ( 𝐺 ‘ 𝐴 ) ) ) ) | 
						
							| 12 | 11 | breq1d | ⊢ ( 𝑧  =  𝐴  →  ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥  ↔  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 )  −  ( 𝐺 ‘ 𝐴 ) ) )  <  𝑥 ) ) | 
						
							| 13 | 12 | rspcv | ⊢ ( 𝐴  ∈  𝑆  →  ( ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥  →  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 )  −  ( 𝐺 ‘ 𝐴 ) ) )  <  𝑥 ) ) | 
						
							| 14 | 4 13 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥  →  ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 )  −  ( 𝐺 ‘ 𝐴 ) ) )  <  𝑥 ) ) | 
						
							| 15 | 14 | ralimdv | ⊢ ( 𝜑  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 )  −  ( 𝐺 ‘ 𝐴 ) ) )  <  𝑥 ) ) | 
						
							| 16 | 15 | reximdv | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 )  −  ( 𝐺 ‘ 𝐴 ) ) )  <  𝑥 ) ) | 
						
							| 17 | 16 | ralimdv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 )  −  ( 𝐺 ‘ 𝐴 ) ) )  <  𝑥 ) ) | 
						
							| 18 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝑍  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  =  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) | 
						
							| 19 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 20 |  | ulmcl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺  →  𝐺 : 𝑆 ⟶ ℂ ) | 
						
							| 21 | 7 20 | syl | ⊢ ( 𝜑  →  𝐺 : 𝑆 ⟶ ℂ ) | 
						
							| 22 |  | ulmscl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺  →  𝑆  ∈  V ) | 
						
							| 23 | 7 22 | syl | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 24 | 1 2 3 18 19 21 23 | ulm2 | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧  ∈  𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 )  −  ( 𝐺 ‘ 𝑧 ) ) )  <  𝑥 ) ) | 
						
							| 25 | 6 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) ) | 
						
							| 26 | 21 4 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 27 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ℂ  ↑m  𝑆 ) ) | 
						
							| 28 |  | elmapi | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ( ℂ  ↑m  𝑆 )  →  ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) | 
						
							| 30 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐴  ∈  𝑆 ) | 
						
							| 31 | 29 30 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 32 | 1 2 5 25 26 31 | clim2c | ⊢ ( 𝜑  →  ( 𝐻  ⇝  ( 𝐺 ‘ 𝐴 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 )  −  ( 𝐺 ‘ 𝐴 ) ) )  <  𝑥 ) ) | 
						
							| 33 | 17 24 32 | 3imtr4d | ⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺  →  𝐻  ⇝  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 34 | 7 33 | mpd | ⊢ ( 𝜑  →  𝐻  ⇝  ( 𝐺 ‘ 𝐴 ) ) |