Step |
Hyp |
Ref |
Expression |
1 |
|
ulm2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
ulm2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
ulm2.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
4 |
|
ulm2.b |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = 𝐵 ) |
5 |
|
ulm2.a |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = 𝐴 ) |
6 |
|
ulmi.u |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
7 |
|
ulmi.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
8 |
|
breq2 |
⊢ ( 𝑥 = 𝐶 → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑥 = 𝐶 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) |
10 |
9
|
rexralbidv |
⊢ ( 𝑥 = 𝐶 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) |
11 |
|
ulmcl |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
13 |
|
ulmscl |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝑆 ∈ V ) |
14 |
6 13
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
15 |
1 2 3 4 5 12 14
|
ulm2 |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
16 |
6 15
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) |
17 |
10 16 7
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) |