Metamath Proof Explorer


Theorem ulmi

Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015)

Ref Expression
Hypotheses ulm2.z 𝑍 = ( ℤ𝑀 )
ulm2.m ( 𝜑𝑀 ∈ ℤ )
ulm2.f ( 𝜑𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) )
ulm2.b ( ( 𝜑 ∧ ( 𝑘𝑍𝑧𝑆 ) ) → ( ( 𝐹𝑘 ) ‘ 𝑧 ) = 𝐵 )
ulm2.a ( ( 𝜑𝑧𝑆 ) → ( 𝐺𝑧 ) = 𝐴 )
ulmi.u ( 𝜑𝐹 ( ⇝𝑢𝑆 ) 𝐺 )
ulmi.c ( 𝜑𝐶 ∈ ℝ+ )
Assertion ulmi ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 )

Proof

Step Hyp Ref Expression
1 ulm2.z 𝑍 = ( ℤ𝑀 )
2 ulm2.m ( 𝜑𝑀 ∈ ℤ )
3 ulm2.f ( 𝜑𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) )
4 ulm2.b ( ( 𝜑 ∧ ( 𝑘𝑍𝑧𝑆 ) ) → ( ( 𝐹𝑘 ) ‘ 𝑧 ) = 𝐵 )
5 ulm2.a ( ( 𝜑𝑧𝑆 ) → ( 𝐺𝑧 ) = 𝐴 )
6 ulmi.u ( 𝜑𝐹 ( ⇝𝑢𝑆 ) 𝐺 )
7 ulmi.c ( 𝜑𝐶 ∈ ℝ+ )
8 breq2 ( 𝑥 = 𝐶 → ( ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 ) )
9 8 ralbidv ( 𝑥 = 𝐶 → ( ∀ 𝑧𝑆 ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ∀ 𝑧𝑆 ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 ) )
10 9 rexralbidv ( 𝑥 = 𝐶 → ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 ) )
11 ulmcl ( 𝐹 ( ⇝𝑢𝑆 ) 𝐺𝐺 : 𝑆 ⟶ ℂ )
12 6 11 syl ( 𝜑𝐺 : 𝑆 ⟶ ℂ )
13 ulmscl ( 𝐹 ( ⇝𝑢𝑆 ) 𝐺𝑆 ∈ V )
14 6 13 syl ( 𝜑𝑆 ∈ V )
15 1 2 3 4 5 12 14 ulm2 ( 𝜑 → ( 𝐹 ( ⇝𝑢𝑆 ) 𝐺 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 ) )
16 6 15 mpbid ( 𝜑 → ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( 𝐵𝐴 ) ) < 𝑥 )
17 10 16 7 rspcdva ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ∀ 𝑧𝑆 ( abs ‘ ( 𝐵𝐴 ) ) < 𝐶 )