Metamath Proof Explorer


Theorem ulmpm

Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Assertion ulmpm ( 𝐹 ( ⇝𝑢𝑆 ) 𝐺𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) )

Proof

Step Hyp Ref Expression
1 ulmf ( 𝐹 ( ⇝𝑢𝑆 ) 𝐺 → ∃ 𝑛 ∈ ℤ 𝐹 : ( ℤ𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) )
2 uzssz ( ℤ𝑛 ) ⊆ ℤ
3 ovex ( ℂ ↑m 𝑆 ) ∈ V
4 zex ℤ ∈ V
5 elpm2r ( ( ( ( ℂ ↑m 𝑆 ) ∈ V ∧ ℤ ∈ V ) ∧ ( 𝐹 : ( ℤ𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ( ℤ𝑛 ) ⊆ ℤ ) ) → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) )
6 3 4 5 mpanl12 ( ( 𝐹 : ( ℤ𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ( ℤ𝑛 ) ⊆ ℤ ) → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) )
7 2 6 mpan2 ( 𝐹 : ( ℤ𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) )
8 7 rexlimivw ( ∃ 𝑛 ∈ ℤ 𝐹 : ( ℤ𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) )
9 1 8 syl ( 𝐹 ( ⇝𝑢𝑆 ) 𝐺𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) )