Step |
Hyp |
Ref |
Expression |
1 |
|
ulmshft.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
ulmshft.w |
⊢ 𝑊 = ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) |
3 |
|
ulmshft.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
ulmshft.k |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
5 |
|
ulmshft.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
6 |
|
ulmshft.h |
⊢ ( 𝜑 → 𝐻 = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ) |
7 |
1 2 3 4 5 6
|
ulmshftlem |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |
8 |
|
eqid |
⊢ ( ℤ≥ ‘ ( ( 𝑀 + 𝐾 ) + - 𝐾 ) ) = ( ℤ≥ ‘ ( ( 𝑀 + 𝐾 ) + - 𝐾 ) ) |
9 |
3 4
|
zaddcld |
⊢ ( 𝜑 → ( 𝑀 + 𝐾 ) ∈ ℤ ) |
10 |
4
|
znegcld |
⊢ ( 𝜑 → - 𝐾 ∈ ℤ ) |
11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝑀 ∈ ℤ ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝐾 ∈ ℤ ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝑛 ∈ 𝑊 ) |
15 |
14 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
16 |
|
eluzsub |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( 𝑛 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
17 |
12 13 15 16
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝑛 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
18 |
17 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝑛 − 𝐾 ) ∈ 𝑍 ) |
19 |
11 18
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ∈ ( ℂ ↑m 𝑆 ) ) |
20 |
6 19
|
fmpt3d |
⊢ ( 𝜑 → 𝐻 : 𝑊 ⟶ ( ℂ ↑m 𝑆 ) ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ 𝑍 ) |
22 |
21 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
23 |
|
eluzelz |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑚 ∈ ℤ ) |
24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ ℤ ) |
25 |
24
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ ℂ ) |
26 |
4
|
zcnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐾 ∈ ℂ ) |
28 |
25 27
|
subnegd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑚 − - 𝐾 ) = ( 𝑚 + 𝐾 ) ) |
29 |
28
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐻 ‘ ( 𝑚 − - 𝐾 ) ) = ( 𝐻 ‘ ( 𝑚 + 𝐾 ) ) ) |
30 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐻 = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ) |
31 |
30
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐻 ‘ ( 𝑚 + 𝐾 ) ) = ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ ( 𝑚 + 𝐾 ) ) ) |
32 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐾 ∈ ℤ ) |
33 |
|
eluzadd |
⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑚 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
34 |
22 32 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑚 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
35 |
34 2
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑚 + 𝐾 ) ∈ 𝑊 ) |
36 |
|
fvoveq1 |
⊢ ( 𝑛 = ( 𝑚 + 𝐾 ) → ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) = ( 𝐹 ‘ ( ( 𝑚 + 𝐾 ) − 𝐾 ) ) ) |
37 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) |
38 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( 𝑚 + 𝐾 ) − 𝐾 ) ) ∈ V |
39 |
36 37 38
|
fvmpt |
⊢ ( ( 𝑚 + 𝐾 ) ∈ 𝑊 → ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ ( 𝑚 + 𝐾 ) ) = ( 𝐹 ‘ ( ( 𝑚 + 𝐾 ) − 𝐾 ) ) ) |
40 |
35 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ ( 𝑚 + 𝐾 ) ) = ( 𝐹 ‘ ( ( 𝑚 + 𝐾 ) − 𝐾 ) ) ) |
41 |
25 27
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑚 + 𝐾 ) − 𝐾 ) = 𝑚 ) |
42 |
41
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ ( ( 𝑚 + 𝐾 ) − 𝐾 ) ) = ( 𝐹 ‘ 𝑚 ) ) |
43 |
40 42
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ ( 𝑚 + 𝐾 ) ) = ( 𝐹 ‘ 𝑚 ) ) |
44 |
29 31 43
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐻 ‘ ( 𝑚 − - 𝐾 ) ) = ( 𝐹 ‘ 𝑚 ) ) |
45 |
44
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( 𝐻 ‘ ( 𝑚 − - 𝐾 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
46 |
3
|
zcnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
47 |
10
|
zcnd |
⊢ ( 𝜑 → - 𝐾 ∈ ℂ ) |
48 |
46 26 47
|
addassd |
⊢ ( 𝜑 → ( ( 𝑀 + 𝐾 ) + - 𝐾 ) = ( 𝑀 + ( 𝐾 + - 𝐾 ) ) ) |
49 |
26
|
negidd |
⊢ ( 𝜑 → ( 𝐾 + - 𝐾 ) = 0 ) |
50 |
49
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 + ( 𝐾 + - 𝐾 ) ) = ( 𝑀 + 0 ) ) |
51 |
46
|
addid1d |
⊢ ( 𝜑 → ( 𝑀 + 0 ) = 𝑀 ) |
52 |
48 50 51
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 + 𝐾 ) + - 𝐾 ) = 𝑀 ) |
53 |
52
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( ( 𝑀 + 𝐾 ) + - 𝐾 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
54 |
53 1
|
eqtr4di |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( ( 𝑀 + 𝐾 ) + - 𝐾 ) ) = 𝑍 ) |
55 |
54
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ ( ( 𝑀 + 𝐾 ) + - 𝐾 ) ) ↦ ( 𝐻 ‘ ( 𝑚 − - 𝐾 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝐻 ‘ ( 𝑚 − - 𝐾 ) ) ) ) |
56 |
5
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑚 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
57 |
45 55 56
|
3eqtr4rd |
⊢ ( 𝜑 → 𝐹 = ( 𝑚 ∈ ( ℤ≥ ‘ ( ( 𝑀 + 𝐾 ) + - 𝐾 ) ) ↦ ( 𝐻 ‘ ( 𝑚 − - 𝐾 ) ) ) ) |
58 |
2 8 9 10 20 57
|
ulmshftlem |
⊢ ( 𝜑 → ( 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |
59 |
7 58
|
impbid |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |