Step |
Hyp |
Ref |
Expression |
1 |
|
ulmshft.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
ulmshft.w |
⊢ 𝑊 = ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) |
3 |
|
ulmshft.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
ulmshft.k |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
5 |
|
ulmshft.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
6 |
|
ulmshft.h |
⊢ ( 𝜑 → 𝐻 = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ) |
7 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
8 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
9 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
10 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
11 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
13 |
1 7 8 9 10 11 12
|
ulmi |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
14 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) |
15 |
14 1
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
16 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → 𝐾 ∈ ℤ ) |
17 |
|
eluzadd |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑖 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
18 |
15 16 17
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑖 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
19 |
18 2
|
eleqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑖 + 𝐾 ) ∈ 𝑊 ) |
20 |
|
eluzelz |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑖 ∈ ℤ ) |
21 |
15 20
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ℤ ) |
22 |
21
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) → 𝑖 ∈ ℤ ) |
23 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐾 ∈ ℤ ) |
24 |
23
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) → 𝐾 ∈ ℤ ) |
25 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) |
26 |
|
eluzsub |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) → ( 𝑘 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑖 ) ) |
27 |
22 24 25 26
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) → ( 𝑘 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑖 ) ) |
28 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑘 − 𝐾 ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ) |
29 |
28
|
fveq1d |
⊢ ( 𝑚 = ( 𝑘 − 𝐾 ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) ) |
30 |
29
|
fvoveq1d |
⊢ ( 𝑚 = ( 𝑘 − 𝐾 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) |
31 |
30
|
breq1d |
⊢ ( 𝑚 = ( 𝑘 − 𝐾 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
32 |
31
|
ralbidv |
⊢ ( 𝑚 = ( 𝑘 − 𝐾 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
33 |
32
|
rspcv |
⊢ ( ( 𝑘 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑖 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
34 |
27 33
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
35 |
34
|
ralrimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
36 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 + 𝐾 ) → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) |
37 |
36
|
raleqdv |
⊢ ( 𝑗 = ( 𝑖 + 𝐾 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
38 |
37
|
rspcev |
⊢ ( ( ( 𝑖 + 𝐾 ) ∈ 𝑊 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
39 |
19 35 38
|
syl6an |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
40 |
39
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
41 |
13 40
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
42 |
41
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
43 |
3 4
|
zaddcld |
⊢ ( 𝜑 → ( 𝑀 + 𝐾 ) ∈ ℤ ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → ( 𝑀 + 𝐾 ) ∈ ℤ ) |
45 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
46 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝑀 ∈ ℤ ) |
47 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝐾 ∈ ℤ ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝑛 ∈ 𝑊 ) |
49 |
48 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
50 |
|
eluzsub |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( 𝑛 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
51 |
46 47 49 50
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝑛 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
52 |
51 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝑛 − 𝐾 ) ∈ 𝑍 ) |
53 |
45 52
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ∈ ( ℂ ↑m 𝑆 ) ) |
54 |
6 53
|
fmpt3d |
⊢ ( 𝜑 → 𝐻 : 𝑊 ⟶ ( ℂ ↑m 𝑆 ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐻 : 𝑊 ⟶ ( ℂ ↑m 𝑆 ) ) |
56 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ ( 𝑘 ∈ 𝑊 ∧ 𝑧 ∈ 𝑆 ) ) → 𝐻 = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ) |
57 |
56
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ ( 𝑘 ∈ 𝑊 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ 𝑘 ) ) |
58 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) = ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ) |
59 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) |
60 |
|
fvex |
⊢ ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ∈ V |
61 |
58 59 60
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑊 → ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ) |
62 |
61
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ ( 𝑘 ∈ 𝑊 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ) |
63 |
57 62
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ ( 𝑘 ∈ 𝑊 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ) |
64 |
63
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ ( 𝑘 ∈ 𝑊 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) ) |
65 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
66 |
|
ulmcl |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) |
67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐺 : 𝑆 ⟶ ℂ ) |
68 |
|
ulmscl |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝑆 ∈ V ) |
69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝑆 ∈ V ) |
70 |
2 44 55 64 65 67 69
|
ulm2 |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → ( 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
71 |
42 70
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
72 |
71
|
ex |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |