Step |
Hyp |
Ref |
Expression |
1 |
|
ulmrel |
⊢ Rel ( ⇝𝑢 ‘ 𝑆 ) |
2 |
1
|
brrelex12i |
⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
3 |
2
|
a1i |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) ) |
4 |
|
3simpa |
⊢ ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) |
5 |
|
fvex |
⊢ ( ℤ≥ ‘ 𝑛 ) ∈ V |
6 |
|
fex |
⊢ ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ( ℤ≥ ‘ 𝑛 ) ∈ V ) → 𝐹 ∈ V ) |
7 |
5 6
|
mpan2 |
⊢ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝐹 ∈ V ) |
8 |
7
|
a1i |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝐹 ∈ V ) ) |
9 |
|
fex |
⊢ ( ( 𝐺 : 𝑆 ⟶ ℂ ∧ 𝑆 ∈ 𝑉 ) → 𝐺 ∈ V ) |
10 |
9
|
expcom |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝐺 : 𝑆 ⟶ ℂ → 𝐺 ∈ V ) ) |
11 |
8 10
|
anim12d |
⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) ) |
12 |
4 11
|
syl5 |
⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) ) |
13 |
12
|
rexlimdvw |
⊢ ( 𝑆 ∈ 𝑉 → ( ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) ) |
14 |
|
df-ulm |
⊢ ⇝𝑢 = ( 𝑠 ∈ V ↦ { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ) |
15 |
|
oveq2 |
⊢ ( 𝑠 = 𝑆 → ( ℂ ↑m 𝑠 ) = ( ℂ ↑m 𝑆 ) ) |
16 |
15
|
feq3d |
⊢ ( 𝑠 = 𝑆 → ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ↔ 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) ) |
17 |
|
feq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝑦 : 𝑠 ⟶ ℂ ↔ 𝑦 : 𝑆 ⟶ ℂ ) ) |
18 |
|
raleq |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
19 |
18
|
rexralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
21 |
16 17 20
|
3anbi123d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑠 = 𝑆 → ( ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
23 |
22
|
opabbidv |
⊢ ( 𝑠 = 𝑆 → { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } = { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ) |
24 |
|
elex |
⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) |
25 |
|
simpr1 |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) |
26 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑛 ) ⊆ ℤ |
27 |
|
ovex |
⊢ ( ℂ ↑m 𝑆 ) ∈ V |
28 |
|
zex |
⊢ ℤ ∈ V |
29 |
|
elpm2r |
⊢ ( ( ( ( ℂ ↑m 𝑆 ) ∈ V ∧ ℤ ∈ V ) ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ( ℤ≥ ‘ 𝑛 ) ⊆ ℤ ) ) → 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
30 |
27 28 29
|
mpanl12 |
⊢ ( ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ( ℤ≥ ‘ 𝑛 ) ⊆ ℤ ) → 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
31 |
25 26 30
|
sylancl |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
32 |
|
simpr2 |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → 𝑦 : 𝑆 ⟶ ℂ ) |
33 |
|
cnex |
⊢ ℂ ∈ V |
34 |
|
simpl |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → 𝑆 ∈ 𝑉 ) |
35 |
|
elmapg |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ 𝑉 ) → ( 𝑦 ∈ ( ℂ ↑m 𝑆 ) ↔ 𝑦 : 𝑆 ⟶ ℂ ) ) |
36 |
33 34 35
|
sylancr |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → ( 𝑦 ∈ ( ℂ ↑m 𝑆 ) ↔ 𝑦 : 𝑆 ⟶ ℂ ) ) |
37 |
32 36
|
mpbird |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → 𝑦 ∈ ( ℂ ↑m 𝑆 ) ) |
38 |
31 37
|
jca |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → ( 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ∧ 𝑦 ∈ ( ℂ ↑m 𝑆 ) ) ) |
39 |
38
|
ex |
⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ∧ 𝑦 ∈ ( ℂ ↑m 𝑆 ) ) ) ) |
40 |
39
|
rexlimdvw |
⊢ ( 𝑆 ∈ 𝑉 → ( ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ∧ 𝑦 ∈ ( ℂ ↑m 𝑆 ) ) ) ) |
41 |
40
|
ssopab2dv |
⊢ ( 𝑆 ∈ 𝑉 → { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ⊆ { 〈 𝑓 , 𝑦 〉 ∣ ( 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ∧ 𝑦 ∈ ( ℂ ↑m 𝑆 ) ) } ) |
42 |
|
df-xp |
⊢ ( ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) × ( ℂ ↑m 𝑆 ) ) = { 〈 𝑓 , 𝑦 〉 ∣ ( 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ∧ 𝑦 ∈ ( ℂ ↑m 𝑆 ) ) } |
43 |
41 42
|
sseqtrrdi |
⊢ ( 𝑆 ∈ 𝑉 → { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ⊆ ( ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) × ( ℂ ↑m 𝑆 ) ) ) |
44 |
|
ovex |
⊢ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ∈ V |
45 |
44 27
|
xpex |
⊢ ( ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) × ( ℂ ↑m 𝑆 ) ) ∈ V |
46 |
45
|
ssex |
⊢ ( { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ⊆ ( ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) × ( ℂ ↑m 𝑆 ) ) → { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ∈ V ) |
47 |
43 46
|
syl |
⊢ ( 𝑆 ∈ 𝑉 → { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ∈ V ) |
48 |
14 23 24 47
|
fvmptd3 |
⊢ ( 𝑆 ∈ 𝑉 → ( ⇝𝑢 ‘ 𝑆 ) = { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ) |
49 |
48
|
breqd |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ 𝐹 { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } 𝐺 ) ) |
50 |
|
simpl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → 𝑓 = 𝐹 ) |
51 |
50
|
feq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ↔ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) ) |
52 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → 𝑦 = 𝐺 ) |
53 |
52
|
feq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( 𝑦 : 𝑆 ⟶ ℂ ↔ 𝐺 : 𝑆 ⟶ ℂ ) ) |
54 |
50
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
55 |
54
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
56 |
52
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( 𝑦 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
57 |
55 56
|
oveq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) |
58 |
57
|
fveq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) |
59 |
58
|
breq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
60 |
59
|
ralbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
61 |
60
|
rexralbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
62 |
61
|
ralbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
63 |
51 53 62
|
3anbi123d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
64 |
63
|
rexbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
65 |
|
eqid |
⊢ { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } = { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } |
66 |
64 65
|
brabga |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
67 |
49 66
|
sylan9bb |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
68 |
67
|
ex |
⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) ) |
69 |
3 13 68
|
pm5.21ndd |
⊢ ( 𝑆 ∈ 𝑉 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |