Metamath Proof Explorer


Theorem umgr0e

Description: The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)

Ref Expression
Hypotheses umgr0e.g ( 𝜑𝐺𝑊 )
umgr0e.e ( 𝜑 → ( iEdg ‘ 𝐺 ) = ∅ )
Assertion umgr0e ( 𝜑𝐺 ∈ UMGraph )

Proof

Step Hyp Ref Expression
1 umgr0e.g ( 𝜑𝐺𝑊 )
2 umgr0e.e ( 𝜑 → ( iEdg ‘ 𝐺 ) = ∅ )
3 2 f10d ( 𝜑 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
4 f1f ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
5 3 4 syl ( 𝜑 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
6 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
7 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
8 6 7 isumgr ( 𝐺𝑊 → ( 𝐺 ∈ UMGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
9 1 8 syl ( 𝜑 → ( 𝐺 ∈ UMGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
10 5 9 mpbird ( 𝜑𝐺 ∈ UMGraph )