| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgr2adedgwlk.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 |  | umgr2adedgwlk.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | umgr2adedgwlk.f | ⊢ 𝐹  =  〈“ 𝐽 𝐾 ”〉 | 
						
							| 4 |  | umgr2adedgwlk.p | ⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 ”〉 | 
						
							| 5 |  | umgr2adedgwlk.g | ⊢ ( 𝜑  →  𝐺  ∈  UMGraph ) | 
						
							| 6 |  | umgr2adedgwlk.a | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 7 |  | umgr2adedgwlk.j | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 ,  𝐵 } ) | 
						
							| 8 |  | umgr2adedgwlk.k | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝐾 )  =  { 𝐵 ,  𝐶 } ) | 
						
							| 9 |  | umgr2adedgspth.n | ⊢ ( 𝜑  →  𝐴  ≠  𝐶 ) | 
						
							| 10 |  | 3anass | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ↔  ( 𝐺  ∈  UMGraph  ∧  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 11 | 5 6 10 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 12 | 1 | umgr2adedgwlklem | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 14 | 13 | simprd | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 15 | 13 | simpld | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 16 |  | ssid | ⊢ { 𝐴 ,  𝐵 }  ⊆  { 𝐴 ,  𝐵 } | 
						
							| 17 | 16 7 | sseqtrrid | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 ) ) | 
						
							| 18 |  | ssid | ⊢ { 𝐵 ,  𝐶 }  ⊆  { 𝐵 ,  𝐶 } | 
						
							| 19 | 18 8 | sseqtrrid | ⊢ ( 𝜑  →  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 ) ) | 
						
							| 20 | 17 19 | jca | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝐾  =  𝐽  →  ( 𝐼 ‘ 𝐾 )  =  ( 𝐼 ‘ 𝐽 ) ) | 
						
							| 23 | 22 | eqcoms | ⊢ ( 𝐽  =  𝐾  →  ( 𝐼 ‘ 𝐾 )  =  ( 𝐼 ‘ 𝐽 ) ) | 
						
							| 24 | 23 | eqeq1d | ⊢ ( 𝐽  =  𝐾  →  ( ( 𝐼 ‘ 𝐾 )  =  { 𝐵 ,  𝐶 }  ↔  ( 𝐼 ‘ 𝐽 )  =  { 𝐵 ,  𝐶 } ) ) | 
						
							| 25 |  | eqtr2 | ⊢ ( ( ( 𝐼 ‘ 𝐽 )  =  { 𝐵 ,  𝐶 }  ∧  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 ,  𝐵 } )  →  { 𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 26 | 25 | ex | ⊢ ( ( 𝐼 ‘ 𝐽 )  =  { 𝐵 ,  𝐶 }  →  ( ( 𝐼 ‘ 𝐽 )  =  { 𝐴 ,  𝐵 }  →  { 𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 27 | 24 26 | biimtrdi | ⊢ ( 𝐽  =  𝐾  →  ( ( 𝐼 ‘ 𝐾 )  =  { 𝐵 ,  𝐶 }  →  ( ( 𝐼 ‘ 𝐽 )  =  { 𝐴 ,  𝐵 }  →  { 𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 28 | 27 | com13 | ⊢ ( ( 𝐼 ‘ 𝐽 )  =  { 𝐴 ,  𝐵 }  →  ( ( 𝐼 ‘ 𝐾 )  =  { 𝐵 ,  𝐶 }  →  ( 𝐽  =  𝐾  →  { 𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐵 } ) ) ) | 
						
							| 29 | 7 8 28 | sylc | ⊢ ( 𝜑  →  ( 𝐽  =  𝐾  →  { 𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 30 |  | eqcom | ⊢ ( { 𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐵 }  ↔  { 𝐴 ,  𝐵 }  =  { 𝐵 ,  𝐶 } ) | 
						
							| 31 |  | prcom | ⊢ { 𝐵 ,  𝐶 }  =  { 𝐶 ,  𝐵 } | 
						
							| 32 | 31 | eqeq2i | ⊢ ( { 𝐴 ,  𝐵 }  =  { 𝐵 ,  𝐶 }  ↔  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐵 } ) | 
						
							| 33 | 30 32 | bitri | ⊢ ( { 𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐵 }  ↔  { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐵 } ) | 
						
							| 34 | 21 1 | umgrpredgv | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 35 | 34 | simpld | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 36 | 35 | ex | ⊢ ( 𝐺  ∈  UMGraph  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 37 | 21 1 | umgrpredgv | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( 𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 38 | 37 | simprd | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 39 | 38 | ex | ⊢ ( 𝐺  ∈  UMGraph  →  ( { 𝐵 ,  𝐶 }  ∈  𝐸  →  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 40 | 36 39 | anim12d | ⊢ ( 𝐺  ∈  UMGraph  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 41 | 5 6 40 | sylc | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 42 |  | preqr1g | ⊢ ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐵 }  →  𝐴  =  𝐶 ) ) | 
						
							| 43 | 41 42 | syl | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐵 }  →  𝐴  =  𝐶 ) ) | 
						
							| 44 |  | eqneqall | ⊢ ( 𝐴  =  𝐶  →  ( 𝐴  ≠  𝐶  →  𝐽  ≠  𝐾 ) ) | 
						
							| 45 | 43 9 44 | syl6ci | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐵 }  →  𝐽  ≠  𝐾 ) ) | 
						
							| 46 | 33 45 | biimtrid | ⊢ ( 𝜑  →  ( { 𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐵 }  →  𝐽  ≠  𝐾 ) ) | 
						
							| 47 | 29 46 | syld | ⊢ ( 𝜑  →  ( 𝐽  =  𝐾  →  𝐽  ≠  𝐾 ) ) | 
						
							| 48 |  | neqne | ⊢ ( ¬  𝐽  =  𝐾  →  𝐽  ≠  𝐾 ) | 
						
							| 49 | 47 48 | pm2.61d1 | ⊢ ( 𝜑  →  𝐽  ≠  𝐾 ) | 
						
							| 50 | 4 3 14 15 20 21 2 49 9 | 2spthd | ⊢ ( 𝜑  →  𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |