Step |
Hyp |
Ref |
Expression |
1 |
|
umgr2adedgwlk.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
|
umgr2adedgwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
umgr2adedgwlk.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 |
4 |
|
umgr2adedgwlk.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 |
5 |
|
umgr2adedgwlk.g |
⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) |
6 |
|
umgr2adedgwlk.a |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) |
7 |
|
umgr2adedgwlk.j |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝐽 ) = { 𝐴 , 𝐵 } ) |
8 |
|
umgr2adedgwlk.k |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝐾 ) = { 𝐵 , 𝐶 } ) |
9 |
|
3anass |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( 𝐺 ∈ UMGraph ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
10 |
5 6 9
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) |
11 |
1
|
umgr2adedgwlklem |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
13 |
12
|
simprd |
⊢ ( 𝜑 → ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) ) |
14 |
12
|
simpld |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) |
15 |
|
ssid |
⊢ { 𝐴 , 𝐵 } ⊆ { 𝐴 , 𝐵 } |
16 |
15 7
|
sseqtrrid |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
17 |
|
ssid |
⊢ { 𝐵 , 𝐶 } ⊆ { 𝐵 , 𝐶 } |
18 |
17 8
|
sseqtrrid |
⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) |
19 |
16 18
|
jca |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
20 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
21 |
4 3 13 14 19 20 2
|
2wlkd |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
22 |
3
|
fveq2i |
⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) |
23 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) = 2 |
24 |
22 23
|
eqtri |
⊢ ( ♯ ‘ 𝐹 ) = 2 |
25 |
24
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) = 2 ) |
26 |
|
s3fv0 |
⊢ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) = 𝐴 ) |
27 |
|
s3fv1 |
⊢ ( 𝐵 ∈ ( Vtx ‘ 𝐺 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) = 𝐵 ) |
28 |
|
s3fv2 |
⊢ ( 𝐶 ∈ ( Vtx ‘ 𝐺 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) |
29 |
26 27 28
|
3anim123i |
⊢ ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) = 𝐴 ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) = 𝐵 ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) ) |
30 |
13 29
|
syl |
⊢ ( 𝜑 → ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) = 𝐴 ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) = 𝐵 ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) ) |
31 |
4
|
fveq1i |
⊢ ( 𝑃 ‘ 0 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) |
32 |
31
|
eqeq2i |
⊢ ( 𝐴 = ( 𝑃 ‘ 0 ) ↔ 𝐴 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ) |
33 |
|
eqcom |
⊢ ( 𝐴 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ↔ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) = 𝐴 ) |
34 |
32 33
|
bitri |
⊢ ( 𝐴 = ( 𝑃 ‘ 0 ) ↔ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) = 𝐴 ) |
35 |
4
|
fveq1i |
⊢ ( 𝑃 ‘ 1 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) |
36 |
35
|
eqeq2i |
⊢ ( 𝐵 = ( 𝑃 ‘ 1 ) ↔ 𝐵 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ) |
37 |
|
eqcom |
⊢ ( 𝐵 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ↔ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) = 𝐵 ) |
38 |
36 37
|
bitri |
⊢ ( 𝐵 = ( 𝑃 ‘ 1 ) ↔ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) = 𝐵 ) |
39 |
4
|
fveq1i |
⊢ ( 𝑃 ‘ 2 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) |
40 |
39
|
eqeq2i |
⊢ ( 𝐶 = ( 𝑃 ‘ 2 ) ↔ 𝐶 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ) |
41 |
|
eqcom |
⊢ ( 𝐶 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ↔ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) |
42 |
40 41
|
bitri |
⊢ ( 𝐶 = ( 𝑃 ‘ 2 ) ↔ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) |
43 |
34 38 42
|
3anbi123i |
⊢ ( ( 𝐴 = ( 𝑃 ‘ 0 ) ∧ 𝐵 = ( 𝑃 ‘ 1 ) ∧ 𝐶 = ( 𝑃 ‘ 2 ) ) ↔ ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) = 𝐴 ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) = 𝐵 ∧ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) ) |
44 |
30 43
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 = ( 𝑃 ‘ 0 ) ∧ 𝐵 = ( 𝑃 ‘ 1 ) ∧ 𝐶 = ( 𝑃 ‘ 2 ) ) ) |
45 |
21 25 44
|
3jca |
⊢ ( 𝜑 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝐴 = ( 𝑃 ‘ 0 ) ∧ 𝐵 = ( 𝑃 ‘ 1 ) ∧ 𝐶 = ( 𝑃 ‘ 2 ) ) ) ) |