| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgr2adedgwlk.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 |  | umgr2adedgwlk.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | umgr2adedgwlk.f | ⊢ 𝐹  =  〈“ 𝐽 𝐾 ”〉 | 
						
							| 4 |  | umgr2adedgwlk.p | ⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 ”〉 | 
						
							| 5 |  | umgr2adedgwlk.g | ⊢ ( 𝜑  →  𝐺  ∈  UMGraph ) | 
						
							| 6 |  | umgr2adedgwlk.a | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 7 |  | umgr2adedgwlk.j | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝐽 )  =  { 𝐴 ,  𝐵 } ) | 
						
							| 8 |  | umgr2adedgwlk.k | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝐾 )  =  { 𝐵 ,  𝐶 } ) | 
						
							| 9 |  | 3anass | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ↔  ( 𝐺  ∈  UMGraph  ∧  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 10 | 5 6 9 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 11 | 1 | umgr2adedgwlklem | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 13 | 12 | simprd | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 14 | 12 | simpld | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 15 |  | ssid | ⊢ { 𝐴 ,  𝐵 }  ⊆  { 𝐴 ,  𝐵 } | 
						
							| 16 | 15 7 | sseqtrrid | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 ) ) | 
						
							| 17 |  | ssid | ⊢ { 𝐵 ,  𝐶 }  ⊆  { 𝐵 ,  𝐶 } | 
						
							| 18 | 17 8 | sseqtrrid | ⊢ ( 𝜑  →  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 ) ) | 
						
							| 19 | 16 18 | jca | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 21 | 4 3 13 14 19 20 2 | 2wlkd | ⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 22 | 3 | fveq2i | ⊢ ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) | 
						
							| 23 |  | s2len | ⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 )  =  2 | 
						
							| 24 | 22 23 | eqtri | ⊢ ( ♯ ‘ 𝐹 )  =  2 | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐹 )  =  2 ) | 
						
							| 26 |  | s3fv0 | ⊢ ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 )  =  𝐴 ) | 
						
							| 27 |  | s3fv1 | ⊢ ( 𝐵  ∈  ( Vtx ‘ 𝐺 )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 )  =  𝐵 ) | 
						
							| 28 |  | s3fv2 | ⊢ ( 𝐶  ∈  ( Vtx ‘ 𝐺 )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 )  =  𝐶 ) | 
						
							| 29 | 26 27 28 | 3anim123i | ⊢ ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 )  =  𝐴  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 )  =  𝐵  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 )  =  𝐶 ) ) | 
						
							| 30 | 13 29 | syl | ⊢ ( 𝜑  →  ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 )  =  𝐴  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 )  =  𝐵  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 )  =  𝐶 ) ) | 
						
							| 31 | 4 | fveq1i | ⊢ ( 𝑃 ‘ 0 )  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) | 
						
							| 32 | 31 | eqeq2i | ⊢ ( 𝐴  =  ( 𝑃 ‘ 0 )  ↔  𝐴  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ) | 
						
							| 33 |  | eqcom | ⊢ ( 𝐴  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 )  ↔  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 )  =  𝐴 ) | 
						
							| 34 | 32 33 | bitri | ⊢ ( 𝐴  =  ( 𝑃 ‘ 0 )  ↔  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 )  =  𝐴 ) | 
						
							| 35 | 4 | fveq1i | ⊢ ( 𝑃 ‘ 1 )  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) | 
						
							| 36 | 35 | eqeq2i | ⊢ ( 𝐵  =  ( 𝑃 ‘ 1 )  ↔  𝐵  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ) | 
						
							| 37 |  | eqcom | ⊢ ( 𝐵  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 )  ↔  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 )  =  𝐵 ) | 
						
							| 38 | 36 37 | bitri | ⊢ ( 𝐵  =  ( 𝑃 ‘ 1 )  ↔  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 )  =  𝐵 ) | 
						
							| 39 | 4 | fveq1i | ⊢ ( 𝑃 ‘ 2 )  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) | 
						
							| 40 | 39 | eqeq2i | ⊢ ( 𝐶  =  ( 𝑃 ‘ 2 )  ↔  𝐶  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ) | 
						
							| 41 |  | eqcom | ⊢ ( 𝐶  =  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 )  ↔  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 )  =  𝐶 ) | 
						
							| 42 | 40 41 | bitri | ⊢ ( 𝐶  =  ( 𝑃 ‘ 2 )  ↔  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 )  =  𝐶 ) | 
						
							| 43 | 34 38 42 | 3anbi123i | ⊢ ( ( 𝐴  =  ( 𝑃 ‘ 0 )  ∧  𝐵  =  ( 𝑃 ‘ 1 )  ∧  𝐶  =  ( 𝑃 ‘ 2 ) )  ↔  ( ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 )  =  𝐴  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 )  =  𝐵  ∧  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 )  =  𝐶 ) ) | 
						
							| 44 | 30 43 | sylibr | ⊢ ( 𝜑  →  ( 𝐴  =  ( 𝑃 ‘ 0 )  ∧  𝐵  =  ( 𝑃 ‘ 1 )  ∧  𝐶  =  ( 𝑃 ‘ 2 ) ) ) | 
						
							| 45 | 21 25 44 | 3jca | ⊢ ( 𝜑  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝐴  =  ( 𝑃 ‘ 0 )  ∧  𝐵  =  ( 𝑃 ‘ 1 )  ∧  𝐶  =  ( 𝑃 ‘ 2 ) ) ) ) |