| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgr2adedgwlk.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 | 1 | umgredgne | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  ≠  𝐵 ) | 
						
							| 3 | 2 | ex | ⊢ ( 𝐺  ∈  UMGraph  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  𝐴  ≠  𝐵 ) ) | 
						
							| 4 | 1 | umgredgne | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  𝐵  ≠  𝐶 ) | 
						
							| 5 | 4 | ex | ⊢ ( 𝐺  ∈  UMGraph  →  ( { 𝐵 ,  𝐶 }  ∈  𝐸  →  𝐵  ≠  𝐶 ) ) | 
						
							| 6 | 3 5 | anim12d | ⊢ ( 𝐺  ∈  UMGraph  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) ) | 
						
							| 7 | 6 | 3impib | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 8 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 9 | 8 1 | umgrpredgv | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 10 | 9 | simpld | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 11 | 10 | 3adant3 | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 12 | 8 1 | umgrpredgv | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( 𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 13 | 12 | simpld | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 14 | 13 | 3adant2 | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 15 | 12 | simprd | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 16 | 15 | 3adant2 | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 17 | 11 14 16 | 3jca | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 18 | 7 17 | jca | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) ) |