Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
clwwlknp |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
4 |
|
simpr |
⊢ ( ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝐺 ∈ UMGraph ) → 𝐺 ∈ UMGraph ) |
5 |
|
uz2m1nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
6 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ↔ ( 𝑁 − 1 ) ∈ ℕ ) |
7 |
5 6
|
sylibr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 0 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑖 = 0 ) → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 + 1 ) = ( 0 + 1 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑖 = 0 ) → ( 𝑖 + 1 ) = ( 0 + 1 ) ) |
12 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
13 |
11 12
|
eqtrdi |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑖 = 0 ) → ( 𝑖 + 1 ) = 1 ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑖 = 0 ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) = ( 𝑊 ‘ 1 ) ) |
15 |
9 14
|
preq12d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑖 = 0 ) → { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ) |
16 |
15
|
eleq1d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑖 = 0 ) → ( { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
17 |
7 16
|
rspcdv |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
18 |
17
|
com12 |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
19 |
18
|
3ad2ant2 |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
20 |
19
|
imp |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝐺 ∈ UMGraph ) → { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) |
22 |
2
|
umgredgne |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑊 ‘ 0 ) ≠ ( 𝑊 ‘ 1 ) ) |
23 |
22
|
necomd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑊 ‘ 1 ) ≠ ( 𝑊 ‘ 0 ) ) |
24 |
4 21 23
|
syl2anc |
⊢ ( ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝐺 ∈ UMGraph ) → ( 𝑊 ‘ 1 ) ≠ ( 𝑊 ‘ 0 ) ) |
25 |
24
|
exp31 |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐺 ∈ UMGraph → ( 𝑊 ‘ 1 ) ≠ ( 𝑊 ‘ 0 ) ) ) ) |
26 |
3 25
|
syl |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐺 ∈ UMGraph → ( 𝑊 ‘ 1 ) ≠ ( 𝑊 ‘ 0 ) ) ) ) |
27 |
26
|
3imp31 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( 𝑊 ‘ 1 ) ≠ ( 𝑊 ‘ 0 ) ) |