Step |
Hyp |
Ref |
Expression |
1 |
|
usgrf1oedg.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
usgrf1oedg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
umgruhgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) |
4 |
3
|
anim1i |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) → ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ) |
6 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
7 |
6 2
|
umgrpredgv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝐴 } ∈ 𝐸 ) → ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) ) |
8 |
7
|
ad2ant2r |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) ) |
9 |
8
|
simprd |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
10 |
6 2
|
umgrpredgv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) → ( 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) |
11 |
10
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ( 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) |
12 |
11
|
simpld |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
13 |
8
|
simpld |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
14 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) |
15 |
1 2 6
|
uhgr2edg |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |
16 |
5 9 12 13 14 15
|
syl131anc |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |