Metamath Proof Explorer


Theorem umgr2v2evtx

Description: The set of vertices in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020)

Ref Expression
Hypothesis umgr2v2evtx.g 𝐺 = ⟨ 𝑉 , { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ , ⟨ 1 , { 𝐴 , 𝐵 } ⟩ } ⟩
Assertion umgr2v2evtx ( 𝑉𝑊 → ( Vtx ‘ 𝐺 ) = 𝑉 )

Proof

Step Hyp Ref Expression
1 umgr2v2evtx.g 𝐺 = ⟨ 𝑉 , { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ , ⟨ 1 , { 𝐴 , 𝐵 } ⟩ } ⟩
2 1 fveq2i ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ⟨ 𝑉 , { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ , ⟨ 1 , { 𝐴 , 𝐵 } ⟩ } ⟩ )
3 prex { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ , ⟨ 1 , { 𝐴 , 𝐵 } ⟩ } ∈ V
4 opvtxfv ( ( 𝑉𝑊 ∧ { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ , ⟨ 1 , { 𝐴 , 𝐵 } ⟩ } ∈ V ) → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ , ⟨ 1 , { 𝐴 , 𝐵 } ⟩ } ⟩ ) = 𝑉 )
5 3 4 mpan2 ( 𝑉𝑊 → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ , ⟨ 1 , { 𝐴 , 𝐵 } ⟩ } ⟩ ) = 𝑉 )
6 2 5 syl5eq ( 𝑉𝑊 → ( Vtx ‘ 𝐺 ) = 𝑉 )