Step |
Hyp |
Ref |
Expression |
1 |
|
umgr2wlk.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
|
umgruhgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) |
3 |
1
|
eleq2i |
⊢ ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
5 |
4
|
uhgredgiedgb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
6 |
3 5
|
syl5bb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
7 |
2 6
|
syl |
⊢ ( 𝐺 ∈ UMGraph → ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
8 |
7
|
biimpd |
⊢ ( 𝐺 ∈ UMGraph → ( { 𝐵 , 𝐶 } ∈ 𝐸 → ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
9 |
8
|
a1d |
⊢ ( 𝐺 ∈ UMGraph → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( { 𝐵 , 𝐶 } ∈ 𝐸 → ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
10 |
9
|
3imp |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
11 |
1
|
eleq2i |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
12 |
4
|
uhgredgiedgb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
13 |
11 12
|
syl5bb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
14 |
2 13
|
syl |
⊢ ( 𝐺 ∈ UMGraph → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
15 |
14
|
biimpd |
⊢ ( 𝐺 ∈ UMGraph → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
16 |
15
|
a1dd |
⊢ ( 𝐺 ∈ UMGraph → ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( { 𝐵 , 𝐶 } ∈ 𝐸 → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) |
17 |
16
|
3imp |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
18 |
|
s2cli |
⊢ 〈“ 𝑗 𝑖 ”〉 ∈ Word V |
19 |
|
s3cli |
⊢ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word V |
20 |
18 19
|
pm3.2i |
⊢ ( 〈“ 𝑗 𝑖 ”〉 ∈ Word V ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word V ) |
21 |
|
eqid |
⊢ 〈“ 𝑗 𝑖 ”〉 = 〈“ 𝑗 𝑖 ”〉 |
22 |
|
eqid |
⊢ 〈“ 𝐴 𝐵 𝐶 ”〉 = 〈“ 𝐴 𝐵 𝐶 ”〉 |
23 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → 𝐺 ∈ UMGraph ) |
24 |
|
3simpc |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) |
26 |
|
simpl |
⊢ ( ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
27 |
26
|
eqcomd |
⊢ ( ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ) |
29 |
|
simpr |
⊢ ( ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
30 |
29
|
eqcomd |
⊢ ( ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐵 , 𝐶 } ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐵 , 𝐶 } ) |
32 |
1 4 21 22 23 25 28 31
|
umgr2adedgwlk |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 〈“ 𝑗 𝑖 ”〉 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 𝑖 ”〉 ) = 2 ∧ ( 𝐴 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ∧ 𝐵 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ∧ 𝐶 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ) ) ) |
33 |
|
breq12 |
⊢ ( ( 𝑓 = 〈“ 𝑗 𝑖 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ↔ 〈“ 𝑗 𝑖 ”〉 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) |
34 |
|
fveqeq2 |
⊢ ( 𝑓 = 〈“ 𝑗 𝑖 ”〉 → ( ( ♯ ‘ 𝑓 ) = 2 ↔ ( ♯ ‘ 〈“ 𝑗 𝑖 ”〉 ) = 2 ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝑓 = 〈“ 𝑗 𝑖 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) → ( ( ♯ ‘ 𝑓 ) = 2 ↔ ( ♯ ‘ 〈“ 𝑗 𝑖 ”〉 ) = 2 ) ) |
36 |
|
fveq1 |
⊢ ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 → ( 𝑝 ‘ 0 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ) |
37 |
36
|
eqeq2d |
⊢ ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 → ( 𝐴 = ( 𝑝 ‘ 0 ) ↔ 𝐴 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ) ) |
38 |
|
fveq1 |
⊢ ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 → ( 𝑝 ‘ 1 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ) |
39 |
38
|
eqeq2d |
⊢ ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 → ( 𝐵 = ( 𝑝 ‘ 1 ) ↔ 𝐵 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ) ) |
40 |
|
fveq1 |
⊢ ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 → ( 𝑝 ‘ 2 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ) |
41 |
40
|
eqeq2d |
⊢ ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 → ( 𝐶 = ( 𝑝 ‘ 2 ) ↔ 𝐶 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ) ) |
42 |
37 39 41
|
3anbi123d |
⊢ ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 → ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ↔ ( 𝐴 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ∧ 𝐵 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ∧ 𝐶 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ) ) ) |
43 |
42
|
adantl |
⊢ ( ( 𝑓 = 〈“ 𝑗 𝑖 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) → ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ↔ ( 𝐴 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ∧ 𝐵 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ∧ 𝐶 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ) ) ) |
44 |
33 35 43
|
3anbi123d |
⊢ ( ( 𝑓 = 〈“ 𝑗 𝑖 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ↔ ( 〈“ 𝑗 𝑖 ”〉 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 𝑖 ”〉 ) = 2 ∧ ( 𝐴 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ∧ 𝐵 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ∧ 𝐶 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ) ) ) ) |
45 |
44
|
spc2egv |
⊢ ( ( 〈“ 𝑗 𝑖 ”〉 ∈ Word V ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word V ) → ( ( 〈“ 𝑗 𝑖 ”〉 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 𝑖 ”〉 ) = 2 ∧ ( 𝐴 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ∧ 𝐵 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ∧ 𝐶 = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) ) |
46 |
20 32 45
|
mpsyl |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) |
47 |
46
|
exp32 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
48 |
47
|
com12 |
⊢ ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
49 |
48
|
rexlimivw |
⊢ ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
50 |
49
|
com13 |
⊢ ( { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
51 |
50
|
rexlimivw |
⊢ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
52 |
51
|
com12 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
53 |
10 17 52
|
mp2d |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) |