Step |
Hyp |
Ref |
Expression |
1 |
|
umgr2wlk.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
1
|
umgr2wlk |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) |
3 |
|
simp1 |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
4 |
|
eqcom |
⊢ ( 𝐴 = ( 𝑝 ‘ 0 ) ↔ ( 𝑝 ‘ 0 ) = 𝐴 ) |
5 |
4
|
biimpi |
⊢ ( 𝐴 = ( 𝑝 ‘ 0 ) → ( 𝑝 ‘ 0 ) = 𝐴 ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( 𝑝 ‘ 0 ) = 𝐴 ) |
7 |
6
|
3ad2ant3 |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑝 ‘ 0 ) = 𝐴 ) |
8 |
|
fveq2 |
⊢ ( 2 = ( ♯ ‘ 𝑓 ) → ( 𝑝 ‘ 2 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) |
9 |
8
|
eqcoms |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( 𝑝 ‘ 2 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) |
10 |
9
|
eqeq1d |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( ( 𝑝 ‘ 2 ) = 𝐶 ↔ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐶 ) ) |
11 |
10
|
biimpcd |
⊢ ( ( 𝑝 ‘ 2 ) = 𝐶 → ( ( ♯ ‘ 𝑓 ) = 2 → ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐶 ) ) |
12 |
11
|
eqcoms |
⊢ ( 𝐶 = ( 𝑝 ‘ 2 ) → ( ( ♯ ‘ 𝑓 ) = 2 → ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐶 ) ) |
13 |
12
|
3ad2ant3 |
⊢ ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( ( ♯ ‘ 𝑓 ) = 2 → ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐶 ) ) |
14 |
13
|
com12 |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐶 ) ) |
15 |
14
|
a1i |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ( ♯ ‘ 𝑓 ) = 2 → ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐶 ) ) ) |
16 |
15
|
3imp |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐶 ) |
17 |
3 7 16
|
3jca |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐶 ) ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐶 ) ) |
19 |
1
|
umgr2adedgwlklem |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
20 |
|
simprr1 |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) ) ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
21 |
|
simprr3 |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) ) ) → 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) |
22 |
20 21
|
jca |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) ) ) → ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) ) |
23 |
19 22
|
mpdan |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) ) |
24 |
|
vex |
⊢ 𝑓 ∈ V |
25 |
|
vex |
⊢ 𝑝 ∈ V |
26 |
24 25
|
pm3.2i |
⊢ ( 𝑓 ∈ V ∧ 𝑝 ∈ V ) |
27 |
26
|
a1i |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → ( 𝑓 ∈ V ∧ 𝑝 ∈ V ) ) |
28 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
29 |
28
|
iswlkon |
⊢ ( ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑓 ∈ V ∧ 𝑝 ∈ V ) ) → ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑝 ↔ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐶 ) ) ) |
30 |
23 27 29
|
syl2an2r |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑝 ↔ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐶 ) ) ) |
31 |
18 30
|
mpbird |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑝 ) |
32 |
31
|
ex |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑝 ) ) |
33 |
32
|
2eximdv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑝 ) ) |
34 |
2 33
|
mpd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑝 ) |