Metamath Proof Explorer


Theorem umgr3cyclex

Description: If there are three (different) vertices in a multigraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017) (Revised by AV, 12-Feb-2021)

Ref Expression
Hypotheses uhgr3cyclex.v 𝑉 = ( Vtx ‘ 𝐺 )
uhgr3cyclex.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion umgr3cyclex ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 uhgr3cyclex.v 𝑉 = ( Vtx ‘ 𝐺 )
2 uhgr3cyclex.e 𝐸 = ( Edg ‘ 𝐺 )
3 umgruhgr ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph )
4 3 3ad2ant1 ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → 𝐺 ∈ UHGraph )
5 simp2 ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) )
6 2 umgredgne ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴𝐵 )
7 6 3ad2antr1 ( ( 𝐺 ∈ UMGraph ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → 𝐴𝐵 )
8 prcom { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 }
9 8 eleq1i ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ { 𝐴 , 𝐶 } ∈ 𝐸 )
10 9 biimpi ( { 𝐶 , 𝐴 } ∈ 𝐸 → { 𝐴 , 𝐶 } ∈ 𝐸 )
11 10 3ad2ant3 ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) → { 𝐴 , 𝐶 } ∈ 𝐸 )
12 2 umgredgne ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) → 𝐴𝐶 )
13 11 12 sylan2 ( ( 𝐺 ∈ UMGraph ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → 𝐴𝐶 )
14 simp2 ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) → { 𝐵 , 𝐶 } ∈ 𝐸 )
15 2 umgredgne ( ( 𝐺 ∈ UMGraph ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → 𝐵𝐶 )
16 14 15 sylan2 ( ( 𝐺 ∈ UMGraph ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → 𝐵𝐶 )
17 7 13 16 3jca ( ( 𝐺 ∈ UMGraph ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) )
18 17 3adant2 ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) )
19 simp3 ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) )
20 1 2 uhgr3cyclex ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) )
21 4 5 18 19 20 syl121anc ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) )