Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
1
|
clwwlkbp |
⊢ ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) → ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) |
4 |
|
lencl |
⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
7 |
|
hasheq0 |
⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑃 ) = 0 ↔ 𝑃 = ∅ ) ) |
8 |
7
|
bicomd |
⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑃 = ∅ ↔ ( ♯ ‘ 𝑃 ) = 0 ) ) |
9 |
8
|
necon3bid |
⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑃 ≠ ∅ ↔ ( ♯ ‘ 𝑃 ) ≠ 0 ) ) |
10 |
9
|
biimpd |
⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑃 ≠ ∅ → ( ♯ ‘ 𝑃 ) ≠ 0 ) ) |
11 |
10
|
a1i |
⊢ ( 𝐺 ∈ V → ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑃 ≠ ∅ → ( ♯ ‘ 𝑃 ) ≠ 0 ) ) ) |
12 |
11
|
3imp |
⊢ ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ≠ 0 ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) → ( ♯ ‘ 𝑃 ) ≠ 0 ) |
14 |
|
clwwlk1loop |
⊢ ( ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = 1 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
15 |
14
|
expcom |
⊢ ( ( ♯ ‘ 𝑃 ) = 1 → ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
16 |
|
eqid |
⊢ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) |
17 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
18 |
17
|
umgredgne |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 0 ) ) |
19 |
|
eqneqall |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 0 ) → ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) ) |
20 |
16 18 19
|
mpsyl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) |
21 |
20
|
expcom |
⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ( 𝐺 ∈ UMGraph → ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) ) |
22 |
15 21
|
syl6 |
⊢ ( ( ♯ ‘ 𝑃 ) = 1 → ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ UMGraph → ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) ) ) |
23 |
22
|
com23 |
⊢ ( ( ♯ ‘ 𝑃 ) = 1 → ( 𝐺 ∈ UMGraph → ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) → ( ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) ) ) |
24 |
23
|
imp4c |
⊢ ( ( ♯ ‘ 𝑃 ) = 1 → ( ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) |
25 |
|
neqne |
⊢ ( ¬ ( ♯ ‘ 𝑃 ) = 1 → ( ♯ ‘ 𝑃 ) ≠ 1 ) |
26 |
25
|
a1d |
⊢ ( ¬ ( ♯ ‘ 𝑃 ) = 1 → ( ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) ) |
27 |
24 26
|
pm2.61i |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) → ( ♯ ‘ 𝑃 ) ≠ 1 ) |
28 |
6 13 27
|
3jca |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ∧ ( 𝐺 ∈ V ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑃 ≠ ∅ ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ≠ 0 ∧ ( ♯ ‘ 𝑃 ) ≠ 1 ) ) |
29 |
3 28
|
mpdan |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ≠ 0 ∧ ( ♯ ‘ 𝑃 ) ≠ 1 ) ) |
30 |
|
nn0n0n1ge2 |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ≠ 0 ∧ ( ♯ ‘ 𝑃 ) ≠ 1 ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
32 |
31
|
ex |
⊢ ( 𝐺 ∈ UMGraph → ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |