Step |
Hyp |
Ref |
Expression |
1 |
|
umgredgne.v |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
1
|
eleq2i |
⊢ ( { 𝑀 , 𝑁 } ∈ 𝐸 ↔ { 𝑀 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) |
3 |
|
edgumgr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
4 |
2 3
|
sylan2b |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
5 |
|
eqid |
⊢ { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } |
6 |
5
|
hashprdifel |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) ) |
7 |
6
|
simp3d |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → 𝑀 ≠ 𝑁 ) |
8 |
4 7
|
simpl2im |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → 𝑀 ≠ 𝑁 ) |