Metamath Proof Explorer


Theorem umgredgne

Description: An edge of a multigraph always connects two different vertices. Analogue of umgrnloopv resp. umgrnloop . (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypothesis umgredgne.v 𝐸 = ( Edg ‘ 𝐺 )
Assertion umgredgne ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → 𝑀𝑁 )

Proof

Step Hyp Ref Expression
1 umgredgne.v 𝐸 = ( Edg ‘ 𝐺 )
2 1 eleq2i ( { 𝑀 , 𝑁 } ∈ 𝐸 ↔ { 𝑀 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) )
3 edgumgr ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) )
4 2 3 sylan2b ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) )
5 eqid { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 }
6 5 hashprdifel ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀𝑁 ) )
7 6 simp3d ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → 𝑀𝑁 )
8 4 7 simpl2im ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → 𝑀𝑁 )